Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 097503    DOI: 10.1088/1674-1056/24/9/097503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Shape-manipulated spin-wave eigenmodes of magnetic nanoelements

Zhang Guang-Fua b, Li Zhi-Xionga, Wang Xi-Guanga, Nie Yao-Zhuanga, Guo Guang-Huaa
a School of Physics and Electronics, Central South University, Changsha 410083, China;
b School of Communication and Electronic Engineering, Hunan City University, Yiyang 413000, China
Abstract  The magnetization dynamics of nanoelements with tapered ends have been studied by micromagnetic simulations. Several spin-wave modes and their evolutions with the sharpness of the element ends are characterized. The edge mode localized in the two ends of the element can be effectively tuned by the element shape. Its frequency increases rapidly with the tapered parameter h and its localized area gradually expands toward the element center, and it finally merges into the fundamental mode at a critical tapered parameter h0. For nanoelements with h > h0, the edge mode is completely suppressed. The standing spin-wave modes mainly in the internal area of the element are less affected by the element shape. The shifts of their frequencies are small and they display different tendencies. The evolution of the spin-wave modes with the element shape is explained by considering the change of the internal field.
Keywords:  ferromagnetic resonance      spin-wave mode      micromagnetic simulation      magnetic nanoelement  
Received:  25 January 2015      Revised:  30 March 2015      Published:  05 September 2015
PACS:  75.40.Gb (Dynamic properties?)  
  75.40.Mg (Numerical simulation studies)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374373), the Doctoral Fund of Ministry of Education of China (Grant No. 20120162110020), the Natural Science Foundation of Hunan Province of China (Grant No. 13JJ2004), and the Science and Technology Planning of Yiyang City of Hunan Province of China (Grant No. 2014JZ54).
Corresponding Authors:  Guo Guang-Hua     E-mail:  guogh@mail.csu.edu.cn

Cite this article: 

Zhang Guang-Fu, Li Zhi-Xiong, Wang Xi-Guang, Nie Yao-Zhuang, Guo Guang-Hua Shape-manipulated spin-wave eigenmodes of magnetic nanoelements 2015 Chin. Phys. B 24 097503

[1] Lavrijsen R, Lee J H, Pacheco A F, Petit D C M C, Mansell R and Cowburn R P 2013 Nature 493 647
[2] Chappert C, Fert A and van Dau F N 2007 Nat. Mater. 6 813
[3] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721
[4] Wang K L, Alzate J G and Amiri P K 2013 J. Phys. D 46 074003
[5] Lee S, Kim H, Yun D J, Rhee S W and Yong K J 2009 Appl. Phys. Lett. 95 262113
[6] Joo S J, Kim T, Shin S H, Lim J Y, Hong J, Song J D, Chang J, Lee H W, Rhie K, Han S H, Shin K H and Johnson M 2013 Nature 494 72
[7] Rückriem R, Krone P, Schrefl T and Albrecht M 2012 Appl. Phys. Lett. 100 242402
[8] Wang X G, Guo G H, Li Z X, Wang D W, Nie Y Z and Tang W 2015 Eur. Phys. Lett. 109 37008
[9] Wang X G, Guo G H, Nie Y Z, Wang D W, Zeng Z M, Li Z X and Tang W 2014 Phys. Rev. B 89 144418
[10] Wang X G, Guo G H, Nie Y Z, Wang D W, Zeng Z M, Li Z X and Tang W 2014 J. Appl. Phys. 116 023904
[11] Lin C S, Lim H S, Wang C C, Adeyeye A O, Wang Z K, Ng S C and Kuok M H 2010 J. Appl. Phys. 108 114305
[12] Giovannini L, Montoncello F, Zivieri R and Nizzoli F 2007 J. Phys.: Condens. Matter. 19 225008
[13] Lü D L and Xu C 2010 Chin. Phys. Lett. 27 097503
[14] Zhou H M, Chen Q and Deng J H 2014 Chin. Phys. B 23 047502
[15] Bayer C, Jorzick J, Hillebrands B, Demokritov S O, Kouba R, Bozinoski R, Slavin A N, Guslienko K Y, Berkov D V, Gorn N L and Kostylev M P 2005 Phys. Rev. B 72 064427
[16] Gubbiotti G, Carlotti G, Okuno T, Grimsditch M, Giovannini L, Montoncello F and Nizzoli F 2005 Phys. Rev. B 72 184419
[17] Rückriem R, Schref T and Albrecht M 2014 Appl. Phys. Lett. 104 052414
[18] Sproll M, Noske M, Bauer H, Kammerer M, Gangwar A, Dieterle G, Weigand M, Stoll H, Woltersdorf G, Back C H and Schütz G 2014 Appl. Phys. Lett. 104 012409
[19] Barros N, Rassam H and Kachkachi H 2013 Phys. Rev. B 88 014421
[20] Zhang G F, Li Z X, Wang X G, Nie Y Z and Guo G H 2015 J. Magn. Magn. Mater. 385 402
[21] Montoncello F, Giovannini L, Nizzoli F, Vavassori P and Grimsditch M 2008 Phys. Rev. B 77 214402
[22] Zheng Y and Zhu J G 1997 J. Appl. Phys. 81 5471
[23] Zhang W L, Tang R J, Jiang H C, Zhang W X, Peng B and Zhang H W 2005 IEEE Trans. Magn. 41 4390
[24] Han X F, Grimsditch M, Meersschaut J, Hoffmann A, Ji Y, Sort J, Nogués J, Divan R, Pearson J E and Keavney D J 2007 Phys. Rev. Lett. 98 147202
[25] Van Waeyenberge B, Puzic A, Stoll H, Chou K W, Tyliszczak T, Hertel R, Fahnle M, Bruck H, Rott K, Reiss G, Neudecker I, Weiss D, Back C H and Schutz G 2006 Nature 444 461
[26] Kammerer M, Weigand M, Curcic M, Noske M, Sproll M, Vansteenkiste A, Van Waeyenberge B, Stoll H, Woltersdorf G, Back C H and Schuetz G 2011 Nat. Commun. 2 279
[27] Garanin D A and Kachkachi H 2009 Phys. Rev. B 80 014420
[28] Seki T, Utsumiya K, Nozaki Y, Imamura H and Takanashi K 2013 Nat. Commun. 4 1726
[29] Donahue M J and Porter D G 2013 Object Oriented MicroMagnetic Framework Project at ITL/NIST
[30] Herring C and Kittel C 1951 Phys. Rev. 81 869
[31] Nembach H T, Shaw J M, Silva T J, Johnson W L, Kim S A, McMichael R D and Kabos P 2011 Phys. Rev. B 83 094427
[32] Nembach H T, Shaw J M, Boone C T and Silva T J 2013 Phys. Rev. Lett. 110 117201
[33] Kim S K 2010 J. Phys. D: Appl. Phys. 43 264004
[34] Gubbiotti G, Conti M, Carlotti G, Candeloro P, Fabrizio E D, Guslienko K Y, Andre A, Bayer C and Slavin A N 2004 J. Phys.: Condens. Matter. 16 7709
[35] Jorzick J, Demokritov S O, Hillebrands B, Bailleul M, Fermon C, Guslienko K Y, Slavin A N, Berkov D V and Gorn N L 2002 Phys. Rev. Lett. 88 047204
[36] Neusser S, Botters B and Grundler D 2008 Phys. Rev. B 78 054406
[37] Guslienko K Y, Chantrell R W and Slavin A N 2003 Phys. Rev. B 68 024422
[38] Guslienko K Y and Slavin A N 2005 Phys. Rev. B 72 014463
[1] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[2] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[3] Improvement of high-frequency properties of Co2FeSi Heusler films by ultrathin Ru underlayer
Cuiling Wang(王翠玲), Shouheng Zhang(张守珩), Shandong Li(李山东), Honglei Du(杜洪磊), Guoxia Zhao(赵国霞), Derang Cao(曹德让). Chin. Phys. B, 2020, 29(4): 046202.
[4] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
[5] Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling
Jiayu Xie(谢家玉), Zhihao Deng(邓志豪), Xia Chang(昌霞), Bing Tang(唐炳). Chin. Phys. B, 2019, 28(7): 077501.
[6] Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2019, 28(7): 077502.
[7] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[8] Magnetic vortex gyration mediated by point-contact position
Hua-Nan Li(李化南), Zi-Wei Fan(笵紫薇), Jia-Xin Li(李佳欣), Yue Hu(胡月), Hui-Lian Liu(刘惠莲). Chin. Phys. B, 2019, 28(10): 107503.
[9] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[10] Voltage control of ferromagnetic resonance and spin waves
Xinger Zhao(赵星儿), Zhongqiang Hu(胡忠强), Qu Yang(杨曲), Bin Peng(彭斌), Ziyao Zhou(周子尧), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 097505.
[11] Interfacial effect on the reverse of magnetization and ultrafast demagnetization in Co/Ni bilayers with perpendicular magnetic anisotropy
Zi-Zhao Gong(弓子召), Wei Zhang(张伟), Wei He(何为), Xiang-Qun Zhang(张向群), Yong Liu(刘永), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(5): 057501.
[12] Dynamic nucleation of domain-chains in magnetic nanotracks
Xiangjun Jin(金香君), Yong Li(李勇), Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127504.
[13] Realization of artificial skyrmion in CoCrPt/NiFe bilayers
Yi Liu(刘益), Yong-Ming Luo(骆泳铭), Zheng-Hong Qian(钱正洪), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2018, 27(12): 127503.
[14] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
[15] Effects of dipolar interactions on magnetic properties of Co nanowire arrays
Hong-Jian Li(李洪健), MingYue(岳明), Qiong Wu(吴琼), Yi Peng(彭懿), Yu-Qing Li(李玉卿), Wei-Qiang Liu(刘卫强), Dong-Tao Zhang(张东涛), Jiu-Xing Zhang(张久兴). Chin. Phys. B, 2017, 26(11): 117503.
No Suggested Reading articles found!