Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 094206    DOI: 10.1088/1674-1056/24/9/094206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Determination of the atomic density of rubidium-87

Zhao Meng, Zhang Kai, Chen Li-Qing
State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China
Abstract  Atomic density is a basic and important parameter in quantum optics, nonlinear optics, and precision measurement. In the past few decades, several methods have been used to measure atomic density, such as thermionic effect, optical absorption, and resonance fluorescence. The main error of these experiments stemmed from depopulation of the energy level, self-absorption, and the broad bandwidth of the laser. Here we demonstrate the atomic density of 87Rb vapor in paraffin coated cell between 297 K and 334 K mainly using fluorescence measurement. Optical pumping, anti-relaxation coating, and absorption compensation approaches are used to decrease measurement error. These measurement methods are suitable for vapor temperature at dozens of degrees. The fitting function for the experimental data of 87Rb atomic density is given.
Keywords:  atomic density      87Rb vapor      fluorescence      absorption compensation  
Received:  12 February 2015      Revised:  15 April 2015      Published:  05 September 2015
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.30.Kq (Fourier optics)  
Fund: Project supported by the Natural Science Foundation of China (Grant Nos. 11274118 and 11474095), the Innovation Program of Shanghai Municipal Education Commission of China (Grant No. 13ZZ036), and the Fundamental Research Funds for the Central Universities of China.
Corresponding Authors:  Chen Li-Qing     E-mail:  lqchen@phy.ecnu.edu.cn

Cite this article: 

Zhao Meng, Zhang Kai, Chen Li-Qing Determination of the atomic density of rubidium-87 2015 Chin. Phys. B 24 094206

[1] Marte A, Volz T, Schuster J, Dürr S, Rempe G, van Kempen E G M and Verhaar B J 2002 Phys. Rev. Lett. 89 283202
[2] Zhou Z C, Wei R, Shi C Y, Li T and Wang Y Z 2011 Chin. Phys. B 20 034206
[3] Qu S P, Zhang Y and Gu S H 2013 Chin. Phys. B 22 099501
[4] Hosseini M, Sparkes B M, Campbell G, Lam P K and Buchler B C 2011 Nat. Commun. 2 174
[5] Vudyasetu P K, Starling D J and Howell J C 2009 Phys. Rev. Lett. 102 123602
[6] Su J, Deng K, Guo D Z, Wang Z, Chen J, Zhang G M and Chen X Z 2010 Chin. Phys. B 19 110701
[7] Zhou H T, Wang D, Guo M J, Gao J R and Zhang J X 2014 Chin. Phys. B 23 093204
[8] Yoshikawa Y, Torii Y and Kuga T 2005 Phys. Rev. Lett. 94 083602
[9] Sheng D, Li S, Dural N and Romalis M V 2013 Phys. Rev. Lett. 110 160802
[10] Liu G B, Sun X P, Gu S H, Feng J W and Zhou X 2012 Physics 41 803
[11] Vanier J 2005 Appl. Phys. B 81 421
[12] Li S L, Xu J, Zhang Z Q, Zhao L B, Long L and Wu Y M 2014 Chin. Phys. B 23 074302
[13] Chen S, Chen Y A, Strassel T, Yuan Z S, Zhao B, Schmiedmayer J and Pan J W 2006 Phys. Rev. Lett. 97 173004
[14] Killian T J 1926 Phys. Rev. 27 578
[15] Gallagher A and Lewist E L 1973 J. Opt. Soc. Am. 63 864
[16] Fairbank W M, Jr Hänsch T W and Schawlow A L 1975 J. Opt. Soc. Am. 65 199
[17] van der Spek A M, Mulders J J L and Steenhuysen L W G 1988 J. Opt. Soc. Am. B 5 1478
[18] Tehranchi M M, Hamidi S M and Abaie B 2013 Journal of the Korean Physical Society 62 731
[19] Olson A J and Mayer S K 2009 Am. J. Phys. 77 116
[20] Seltzer S J 2008 Developments in Alkali-Metal Atomic Magnetometry pp. 32-37 (America: Princeton University)
[21] Steck D A Rubidium 87 D Line Data (Los Alamos National Laboratory)
[22] A Product Of Teachspin 2002 Optical Pumping of Rubidium (New York)
[1] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[2] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[3] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[4] A method for calibrating the confocal volume of a confocal three-dimensional micro-x-ray fluorescence setup
Peng Zhou(周鹏), Xin-Ran Ma(马欣然), Shuang Zhang(张爽), Tian-Xi Sun(孙天希), Zhi-Guo Liu(刘志国). Chin. Phys. B, 2020, 29(2): 020702.
[5] Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence
Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华). Chin. Phys. B, 2020, 29(12): 124212.
[6] Spectral attenuation of a 400-nm laser pulse propagating through a plasma filament induced by an intense femtosecond laser pulse
Quan-Jun Wang(王全军), Rao Chen(陈娆), Jia-Chen Zhao(赵家琛), Chun-Lin Sun(孙春霖), Xiao-Zhen Wang(王小珍), Jing-Jie Ding(丁晶洁), Zuo-Ye Liu(刘作业), Bi-Tao Hu(胡碧涛). Chin. Phys. B, 2020, 29(1): 013301.
[7] Highly sensitive detection of Rydberg atoms with fluorescence loss spectrum in cold atoms
Xuerong Shi(师雪荣), Hao Zhang(张好), Mingyong Jing(景明勇), Linjie Zhang(张临杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2020, 29(1): 013201.
[8] Optimization of a magneto-optic trap using nanofibers
Xin Wang(王鑫), Li-Jun Song(宋丽军), Chen-Xi Wang(王晨曦), Peng-Fei Zhang(张鹏飞), Gang Li(李刚), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(7): 073701.
[9] Crystal growth and spectral properties of Tb: Lu2O3
Jiaojiao Shi(施佼佼), Bin Liu(刘斌), Qingguo Wang(王庆国), Huili Tang(唐慧丽), Feng Wu(吴锋), Dongzhen Li(李东振), Hengyu Zhao(赵衡煜), Zhanshan Wang(王占山), Wen Deng(邓文), Xu Zian(徐子安), Xu Jiayue(徐家跃), Xiaodong Xu(徐晓东), Jun Xu(徐军). Chin. Phys. B, 2018, 27(9): 097801.
[10] Factors affecting improvement of fluorescence intensity of quartet and doublet state of NO diatomic molecule excited by glow discharge
Ahmed Asaad I Khalil, Reem Al-Tuwirqi, Mohammed A Gondal, Noura Al-Suliman. Chin. Phys. B, 2018, 27(8): 085202.
[11] Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy: Lu2O3 for yellow laser
Jiaojiao Shi(施佼佼), Bin Liu(刘斌), Qingguo Wang(王庆国), Huili Tang(唐慧丽), Feng Wu(吴锋), Dongzhen Li(李东振), Hengyu Zhao(赵衡煜), Zhanshan Wang(王占山), Wen Deng(邓文), Xiaodong Xu(徐晓东), Jun Xu(徐军). Chin. Phys. B, 2018, 27(7): 077802.
[12] Demonstration of multi-Watt all-fiber superfluorescent source operating near 980 nm
Yankun Ren(任彦锟), Jianqiu Cao(曹涧秋), Hanyuan Ying(应汉辕), Heng Chen(陈恒), Zhiyong Pan(潘志勇), Shaojun Du(杜少军), Jinbao Chen(陈金宝). Chin. Phys. B, 2018, 27(3): 030703.
[13] Absolute density measurement of nitrogen dioxide with cavity-enhanced laser-induced fluorescence
Zheng-Hai Yang(杨正海), Yong-Cheng Yang(杨永成), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平). Chin. Phys. B, 2018, 27(10): 100601.
[14] Resonantly driven exciton Rabi oscillation in single quantum dots emitting at 1300 nm
Yong-Zhou Xue(薛永洲), Ze-Sheng Chen(陈泽升), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川), De-Sheng Jiang(江德生), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权). Chin. Phys. B, 2017, 26(8): 084202.
[15] Enhancement of Förster energy transfer from thermally activated delayed fluorophores layer to ultrathin phosphor layer for high color stability in non-doped hybrid white organic light-emitting devices
Zijun Wang(王子君), Juan Zhao(赵娟), Chang Zhou(周畅), Yige Qi(祁一歌), Junsheng Yu(于军胜). Chin. Phys. B, 2017, 26(4): 047302.
No Suggested Reading articles found!