Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 094207    DOI: 10.1088/1674-1056/24/9/094207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Comparison of absorption–dispersion and optical bistability behaviors between open and closed four-level tripod atomic systems

R. Karimi, S. H. Asadpour, S. Batebi, H. Rahimpour Soleimani
Department of Physics, University of Guilan, Rasht, Iran
Abstract  In this paper we investigate the optical properties of an open four-level tripod atomic system driven by an elliptically polarized probe field and compare its properties with the corresponding closed system. Our results reveal that absorption, dispersion, group velocity, and optical bistability of the probe field can be manipulated by adjusting the phase difference between the two circularly polarized components of a single coherent field and cavity parameters, i.e., the atomic exit rate from cavity and atomic injection rates.
Keywords:  absorption      dispersion      optical bistability  
Received:  07 February 2015      Revised:  12 April 2015      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  42.65.-k (Nonlinear optics)  
Corresponding Authors:  S. H. Asadpour     E-mail:  S.Hosein.Asadpour@gmail.com

Cite this article: 

R. Karimi, S. H. Asadpour, S. Batebi, H. Rahimpour Soleimani Comparison of absorption–dispersion and optical bistability behaviors between open and closed four-level tripod atomic systems 2015 Chin. Phys. B 24 094207

[1] Wu Y and Yang X 2005 Phys. Rev. A 71 053806
[2] Scully M O, Zhu S Y and Gavrielides A 1989 Phys. Rev. Lett. 62 2813
[3] Kang H and Zhu Y F 2003 Phys. Rev. Lett. 91 093601
[4] Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904
[5] Wu Y and Deng L 2004 Opt. Lett. 29 2064
[6] Joshi A, Yang W and Xiao M 2003 Phys. Rev. A 68 015806
[7] Asadpour S H and Eslami Majd A 2012 J. Lumin. 132 1477
[8] Osman K I and Joshi A 2012 Phys. Lett. A 376 2565
[9] Lu X Y, Li J H, liu J B and Luo J M 2006 J. Phys. B: At. Mol. Opt. Phys. 39 5161
[10] Wu J, Lu X Y and Zheng L L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 161003
[11] Hau L V, Harris S E, Z. Dutton and Behroozi C H 1999 Nature 397 594
[12] Wang L J, Kuzmich A and Dogariu A 2000 Nature 406 277
[13] Wang Z and Yu B 2014 Laser Phys. Lett. 11 035201
[14] Yang W X, Hou J M and Lee R K 2008 Phys. Rev. A 77 033838
[15] Goren C, Wilson-Gordon A D, Rosenbluh M and Friedmann H 2003 Phys. Rev. A 68 043818
[16] Agarwal G S, Dey T N and Menon S 2001 Phys. Rev. A 64 053809
[17] Han D A, Zeng Y G, Chen W C, Dong S G, Huang C Q, Zhu C Y and Liang P Y 2011 Commun. Theor. Phys. 55 671
[18] Fleischhaker R and Evers J 2009 Phys. Rev. A 80 063816
[19] Javanainen J 1992 Europhys. Lett. 17 407.
[20] Han D A, Guo H, Bai Y F, Sun H and Zeng Y G 2006 Commun. Theor. Phys. 46 731
[21] Joshi A, Yang W and Xiao M 2003 Phys. Rev. A 68 015806
[22] Sun H, Guo H, Bai Y, Han D and Xuzong Chen S F 2005 Phys. Lett. A 33 68
[23] Bortman-Arbiv D, Wilson-Grodon A D and Friedmann H 2001 Phys. Rev. A 63 043818
[24] Menon S and Agarwal G S 1998 Phys. Rev. A 57 4014
[25] Hou B P, Wang S J, Yu W L and Sun W L 2004 Phys. Rev. A 69 053805
[26] Xu W H, Wu J H and Gao J Y 2002 Phys. Rev. A 66 063812
[27] Xu W H and Zhang H F 2003 J. Opt. Soc. Am. B 20 2377
[28] Wang Z and Xu M 2009 Opt. Commun. 282 1574
[29] Wang Z, Chen A X, Bai Y, Yang W X and Lee R K 2012 Journal of the Optical Society of America B 29 2891
[30] Li J H, Lü X Y, Luo J M and Huang Q J 2006 Phys. Rev. A 74 035801
[31] Yuan J, Feng W, Li P, Zhang X, Zhang Y, Zheng H and Zhang Y 2012 Phys. Rev. A 86 063820
[32] Chen H, Zhang Y, Yao X, Wu Z, Zhang X, Zhang Y and Xiao M 2014 Scientific Reports 4 3619
[33] Zhang Y, Wang Z, Nie Z, Li C, Chen H, Lu K and Xiao M 2011 Phys. Rev. Lett. 106 093904
[34] Zhang Y, Khadka U, Anderson B and Xiao M 2009 Phys. Rev. Lett. 102 013601
[35] Rosenberger A T, Orozco L A and Kimble H J 1983 Phys. Rev. A 28 2529
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[3] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[4] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[5] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[6] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[7] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[8] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[9] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[10] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[11] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[12] Li(2p $\leftarrow$ 2s) + Na(3s) pressure broadening in the far-wing and line-core profiles
F Talbi, N Lamoudi, L Reggami, M T Bouazza, K Alioua, and M Bouledroua. Chin. Phys. B, 2022, 31(7): 073401.
[13] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
[14] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[15] All-fiber erbium-doped dissipative soliton laser with multimode interference based on saturable-reserve saturable hybrid optical switch
Xin Zhao(赵鑫), Renyan Wan(王仁严), Weiyan Li(李卫岩), Liang Jin(金亮), He Zhang(张贺), Yan Li(李岩), Yingtian Xu(徐英添), Linlin Shi(石琳琳), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(6): 064215.
No Suggested Reading articles found!