Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 086807    DOI: 10.1088/1674-1056/24/8/086807
Special Issue: TOPICAL REVIEW — Silicene
TOPICAL REVIEW—Silicene Prev   Next  

Chemical modification of silicene

Wang Rong (王蓉)a, Xu Ming-Sheng (徐明生)b, Pi Xiao-Dong (皮孝东)c
a Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China;
b Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China;
c State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Abstract  

Silicene is a two-dimensional (2D) material, which is composed of a single layer of silicon atoms with sp2–sp3 mixed hybridization. The sp2–sp3 mixed hybridization renders silicene excellent reactive ability, facilitating the chemical modification of silicene. It has been demonstrated that chemical modification effectively enables the tuning of the properties of silicene. We now review all kinds of chemical modification methods for silicene, including hydrogenation, halogenation, organic surface modification, oxidation, doping and formation of 2D hybrids. The effects of these chemical modification methods on the geometrical, electronic, optical, and magnetic properties of silicene are discussed. The potential applications of chemically modified silicene in a variety of fields such as electronics, optoelectronics, and magnetoelectronics are introduced. We finally envision future work on the chemical modification of silicene for further advancing the development of silicene.

Keywords:  silicene      chemical modification      electronic properties      optical properties      magnetic properties  
Received:  30 May 2015      Revised:  27 June 2015      Accepted manuscript online: 
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  34.35.+a (Interactions of atoms and molecules with surfaces)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  74.25.Gz (Optical properties)  
Fund: 

Project supported by the National Basic Program of China (Grant No. 2013CB632101), the National Natural Science Foundation of China (Grant Nos. 61222404 and 61474097), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2014XZZX003-09).

Corresponding Authors:  Pi Xiao-Dong     E-mail:  xdpi@zju.edu.cn

Cite this article: 

Wang Rong (王蓉), Xu Ming-Sheng (徐明生), Pi Xiao-Dong (皮孝东) Chemical modification of silicene 2015 Chin. Phys. B 24 086807

[1] Kara A, Enriquez H, Seitsonen A P, Lew Yan Voon L C, Vizzini S, Aufray B and Oughaddou H 2012 Surf. Sci. Rep. 67 1
[2] Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766.
[3] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
[4] Feng B, Li H, Liu C C, Shao T N, Cheng P, Yao Y, Meng S, Chen L and Wu K 2013 ACS Nano 7 9049
[5] Guzmán-Verri G and Lew Yan Voon L 2007 Phys. Rev. B 76 075131
[6] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
[7] Drummond N D, Zólyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
[8] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[9] Koski K J and Cui Y 2013 ACS Nano 7 3739
[10] Lay G L 2015 Nat. Nano 10 202
[11] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nano 10 227
[12] Zandvliet H J W 2014 Nano Today 9 691
[13] Huang B, Xiang H and Wei S 2013 Phys. Rev. Lett. 111 145502
[14] Houssa M, Pourtois G, Afanas'ev V V and Stesmans A 2010 Appl. Phys. Lett. 97 112106
[15] Ding Y and Wang Y 2012 Appl. Phys. Lett. 100 083102
[16] Lew Yan Voon L C, Sandberg E, Aga R S and Farajian A A 2010 Appl. Phys. Lett. 97 163114
[17] Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas'ev V V and Stesmans A 2011 Appl. Phys. Lett. 98 223107
[18] Zhang P, Li X D, Hu C H, Wu S Q and Zhu Z Z 2012 Phys. Lett. A 376 1230
[19] Wu W, Ao Z, Yang C, Li S, Wang G, Li C and Li S 2015 J. Mater. Chem. C 3 2593
[20] Wu W, Ao Z, Wang T, Li C and Li S 2014 Phys. Chem. Chem. Phys. 16 16588
[21] Yan J, Stein R, David M, Wang X and Chou M 2013 Phys. Rev. B 88 121403
[22] Zhuang J, Xu X, Du Y, Wu K, Chen L, Hao W, Wang J, Yeoh W, Wang X and Dou S 2015 Phys. Rev. B 91 161409
[23] Osborn T H, Farajian A A, Pupysheva O V, Aga R S and Lew Yan Voon L C 2011 Chem. Phys. Lett. 511 101
[24] Guzman-Verri G G and Lew Yan Voon L C 2011 J. Phys.: Condens. Matter. 23 145502
[25] Wei W, Dai Y, Huang B and Jacob T 2013 Phys. Chem. Chem. Phys. 15 8789
[26] Chinnathambi K, Chakrabarti A, Banerjee A and Deb S 2012 arXiv: 1205.5099
[27] Wei W and Jacob T 2013 Phys. Rev. B 88 045203
[28] Hussain T, Chakraborty S, De Sarkar A, Johansson B and Ahuja R 2014 Appl. Phys. Lett. 105 123903
[29] Liu G, Lei X L, Wu M S, Xu B and Ouyang C Y 2014 J. Phys.: Conden. Matter. 26 355007
[30] Zhang R W, Zhang C W, Ji W X, Hu S J, Yan S S, Li S S, Li P, Wang P J and Liu Y S 2014 J. Phys. Chem. C 118 25278
[31] Qiu J, Fu H, Xu Y, Oreshkin A, Shao T, Li H, Meng S, Chen L and Wu K 2015 Phys. Rev. Lett. 114 126101
[32] Zhang C W and Yan S S 2012 J. Phys. Chem. C 116 4163
[33] Pan F, Quhe R, Ge Q, Zheng J, Ni Z, Wang Y, Gao Z, Wang L and Lu J 2014 Physica E 56 43
[34] Gao N, Zheng W T and Jiang Q 2012 Phys. Chem. Chem. Phys. 14 257
[35] Zhang W B, Song Z B and Dou L M 2015 J. Mater. Chem. C 3 3087
[36] Wang X, Liu H and Tu S T 2015 RSC Adv. 5 6238
[37] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[38] Zheng F and Zhang C 2012 Nanoscale Res. Lett. 7 422
[39] Wang R, Pi X D, Ni Z, Liu Y and Yang D 2015 RSC Adv. 5 33831
[40] Okamoto H, Sugiyama Y and Nakano H 2011 Chem. Eur. J. 17 9864
[41] Nakano H, Nakano M, Nakanishi K, Tanaka D, Sugiyama Y, Ikuno T, Okamoto H and Ohta T 2012 J. Am. Chem. Soc. 134 5452
[42] Okamoto H, Kumai Y, Sugiyama Y, Mitsuoka T, Nakanishi K, Ohta T, Nozaki H, Yamaguchi S, Shirai S and Nakano H 2010 J. Am. Chem. Soc. 132 2710
[43] Sugiyama Y, Okamoto H, Mitsuoka T, Morikawa T, Nakanishi K, Ohta T and Nakano H 2010 J. Am. Chem. Soc. 132 5946
[44] Rubio-Pereda P and Takeuchi N 2013 J. Chem. Phys. 138 194702
[45] Spencer M J S, Bassett M R, Morishita T, Snook I K and Nakano H 2013 New J. Phys. 15 125018
[46] Du Y, Zhuang J C, Liu H S, Xu X, Eilers S, Wu K H, Peng C, Zhao J J, Pi X D, See K, Peleckis G, Wang X and Dou X 2014 ACS Nano 8 10019
[47] De Padova P, Ottaviani C, Quaresima C, Olivieri B, Imperatori P, Salomon E, Angot T, Quagliano L, Romano C, Vona A, Muniz-Miranda M, Generosi A, Paci B and Le Lay G 2014 2D Mater. 1 021003
[48] De Padova P, Quaresima C, Olivieri B, Perfetti P and Le Lay G 2011 J. Phys. D: Appl. Phys. 44 312001
[49] Molle A, Grazianetti C, Chiappe D, Cinquanta E, Cianci E, Tallarida G and Fanciulli M 2013 Adv. Func. Mater. 24 5088
[50] Friedlein R, Van Bui H, Wiggers F B, Yamada-Takamura Y, Kovalgin A Y and de Jong M P 2014 J. Chem. Phys. 140 204705
[51] Xu X, Zhuang J, Du Y, Feng H, Zhang N, Liu C, Lei T, Wang J, Spencer M, Morishita T, Wang X and Dou S X 2014 Sci. Rep. 4 7543
[52] Wang Y and Ding Y 2013 Phys. Status Solid-R 7 410
[53] Wang R, Pi X D, Ni Z, Liu Y, Lin S, Xu M and Yang D 2013 Sci. Rep. 3 3507
[54] Lin X and Ni J 2012 Phys. Rev. B 86 075440
[55] Quhe R, Fei R, Liu Q, Zheng J, Li H, Xu C, Ni Z, Wang Y, Yu D, Gao Z and Lu J 2012 Sci. Rep. 2 853
[56] Ni Z, Zhong H, Jiang X, Quhe R, Luo G, Wang Y, Ye M, Yang J, Shi J and Lu J 2014 Nanoscale 6 7609
[57] Cheng Y C, Zhu Z Y and Schwingenschlögl U 2011 Europhys. Lett. 95 17005
[58] Sivek J, Sahin H, Partoens B and Peeters F M 2013 Phys. Rev. B 87 085444
[59] Pi X D, Ni Z Y, Liu Y, Ruan Z, Xu M and Yang D 2015 Phys. Chem. Chem. Phys. 17 4146
[60] Zheng R, Lin X and Ni J 2014 Appl. Phys. Lett. 105 092410
[61] Drissi L B, Saidi E H, Bousmina M and Fassi-Fehri O 2012 J. Phys.: Conden. Matter 24 485502
[62] Drissi L B and Ramadan F Z 2015 Physica E 68 38
[63] Zhang P, Xiao B B, Hou X L, Zhu Y F and Jiang Q 2014 Sci. Rep. 4 3821
[64] Ding Y and Wang Y 2013 J. Phys. Chem. C 117 18266
[65] Zhang R W, Zhang C W, Li S S, Ji W X, Wang P J, Li F, Li P, Ren M J and Yuan M 2014 Solid State Commun. 191 49
[66] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610
[67] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401
[68] Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y and Jena P 2009 Nano Lett. 9 3867
[69] Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[70] Williamson A J, Grossman J C, Hood R Q, Puzder A and Galli G 2002 Phys. Rev. Lett. 89 196803
[71] Schwierz F 2010 Nat. Nanotech. 5 487
[72] Zhu W, Sridhar S, Liu L, Hernandez E, Donnelly V M and Economou D J 2014 J. Appl. Phys. 115 203303
[73] Nakamura Y, Mera Y and Maeda K 2002 Surf. Sci. 497 166
[74] Fukata N, Jevasuwan W, Ikemoto Y and Moriwaki 2015 Nanoscale 7 7246
[75] Kim J, Kwon M, Logeeswaran V, Grego S and Islam M 2012 IEEE T. Nanotechnol. 11 782
[76] Ma Y, Chen X, Pi X D and Yang D 2011 J. Phys. Chem. C 115 12822
[77] Ma Y, Pi X D and Yang D 2012 J. Phys. Chem. C 116 5401
[78] Nakano H, Mitsuoka T, Harada M, Horibuchi K, Nozaki H, Takahashi N, Nonaka T, Seno Y and Nakamura H 2006 Angew. Chem. Inter. Edi. 45 6303
[79] Aufray B, Kara A, Vizzini S B, Oughaddou H, Leándri C, Ealet B and Le Lay G 2010 Appl. Phys. Lett. 96 183102
[80] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S B, Ealet B N and Aufray B 2010 Appl. Phys. Lett. 97 223109
[81] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
[82] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[83] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[84] Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, Houssa M and Molle A 2014 Adv. Mater. 26 2096
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[3] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[4] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[5] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[6] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[9] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[10] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[11] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[12] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[13] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[14] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[15] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
No Suggested Reading articles found!