Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 087101    DOI: 10.1088/1674-1056/24/8/087101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene

Hu Bo (胡波)
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron–hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron–hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.
Keywords:  bilayer graphene      tunable band gap      electron–hole puddles      charged impurity scattering  
Received:  09 September 2014      Revised:  20 March 2015      Accepted manuscript online: 
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  72.20.Dp (General theory, scattering mechanisms)  
  72.20.Fr (Low-field transport and mobility; piezoresistance)  
Corresponding Authors:  Hu Bo     E-mail:  hubo2011@semi.ac.cn

Cite this article: 

Hu Bo (胡波) Low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene 2015 Chin. Phys. B 24 087101

[1] Zhang Y B, Tang T T, Girit C, Hao Z, Martin M C, Zett A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820
[2] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[3] Sarma S D, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
[4] Yu W J, Liao L, Chae S H, Lee Y H and Duan X F 2011 Nano Lett. 11 4759
[5] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
[6] Zhu W J, Perebeinos V, Freitag M and Avouris P 2009 Phys. Rev. B 80 235402
[7] Mikito Koshino and Tsuneya Ando 2006 Phys. Rev. B 73 245403
[8] Maxim Trushin 2012 Europhys. Lett. 98 47007
[9] Jian Li, Ivar Martin, Markus Büttiker and Alberto F Morpurgo 2011 Nat. Phys. 7 38
[10] Alfonso Reina, Xiaoting Jia, John Ho, Daniel Nezich, Hyungbin Son, Vladimir Bulovic, Mildred S Dresselhaus and Jing Kong 2009 Nano Lett. 9 30
[11] Phillip N First, Walt A de Heer, Thomas Seyller, Claire Berger, Joseph A Stroscio and Jeong-Sun Moon 2010 MRS Bull. 35 296
[12] Elena Stolyarova, Kwang Taeg Rim, Sunmin Ryu, Janina Maultzsch, Philip Kim, Louis E Brus, Tony F Heinz, Mark S Hybertsen, George W and Flynn 2007 Proc. Natl. Acad. Sci. USA 104 9209
[13] Sarma S D, Hwang E H and Rossi E 2010 Phys. Rev. B 81 161407
[14] McCann E and Fal'ko V I 2006 Phys. Rev. Lett. 96 086805
[15] Zhang Y B, Brar V W, Girit C, Zettl A and Crommie M F 2009 Nat. Phys. 5 722
[16] Deshpande A, Bao W, Zhao Z, Lau C N and LeRoy B J 2009 Appl. Phys. Lett. 95 243502
[17] Falkovsky L A 2009 Phys. Rev. B 80 113413
[18] Fogler M M and McCann E 2010 Phys. Rev. B 82 197401
[19] Castro E V, Novoselov K S, Morozov S V, Peres N M, Santos J M and Nilsson J 2007 Phys. Rev. Lett. 99 216802
[20] Zhang L M, Li Z Q, Basov D N and Fogler M M 2008 Phys. Rev. B 78 235408
[21] Xiao S D, Chen J H, Adam S, Williams E D and Fuhrer M S 2010 Phys. Rev. B 82 041406
[22] Li Q Z, Hwang E H and Sarma S D 2011 Phys. Rev. B 84 115442
[23] Sarma S D, Hwang E H and Li Q Z 2012 Phys. Rev. B 85 195451
[1] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[2] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[3] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[4] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[5] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
[6] Twistronics in graphene-based van der Waals structures
Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2020, 29(11): 117303.
[7] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal
Zedong Li(李泽东) and Z F Wang(王征飞)†. Chin. Phys. B, 2020, 29(10): 107101.
[8] Possible nodeless s±-wave superconductivity in twisted bilayer graphene
Zhe Liu(刘哲), Yu Li(李宇), Yi-Feng Yang(杨义峰). Chin. Phys. B, 2019, 28(7): 077103.
[9] Modulation of magnetic and electrical properties of bilayer graphene quantum dots using rotational stacking faults
Hong-Ping Yang(杨宏平), Wen-Juan Yuan(原文娟), Jun Luo(罗俊), Jing Zhu(朱静). Chin. Phys. B, 2019, 28(7): 078106.
[10] Transport properties in monolayer-bilayer-monolayer graphene planar junctions
Kai-Long Chu(储开龙), Zi-Bo Wang(王孜博), Jiao-Jiao Zhou(周娇娇), Hua Jiang(江华). Chin. Phys. B, 2017, 26(6): 067202.
[11] Orbital electronic heat capacity of hydrogenated monolayer and bilayer graphene
Mohsen Yarmohammadi. Chin. Phys. B, 2017, 26(2): 026502.
[12] Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage
E Lotfi, H Rezania, B Arghavaninia, M Yarmohammadi. Chin. Phys. B, 2016, 25(7): 076102.
[13] Perfect spin filtering controlled by an electric field in a bilayer graphene junction: Effect of layer-dependent exchange energy
Kitakorn Jatiyanon, I-Ming Tang, Bumned Soodchomshom. Chin. Phys. B, 2016, 25(7): 078104.
[14] Theoretical investigation of structural and optical properties of semi-fluorinated bilayer graphene
Xiao-Jiao San(伞晓娇), Bai Han(韩柏), Jing-Geng Zhao(赵景庚). Chin. Phys. B, 2016, 25(3): 037305.
[15] Electronic transport of bilayer graphene with asymmetry line defects
Xiao-Ming Zhao(赵小明), Ya-Jie Wu(吴亚杰), Chan Chen(陈婵), Ying Liang(梁颖), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2016, 25(11): 117303.
No Suggested Reading articles found!