Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 078105    DOI: 10.1088/1674-1056/24/7/078105
RAPID COMMUNICATION Prev   Next  

Improved performance of microcrystalline silicon solar cell with graded-band-gap silicon oxide buffer layer

Shi Zhen-Liang (史振亮), Ji Yun (季云), Yu Wei (于威), Yang Yan-Bin (杨彦斌), Cong Ri-Dong (丛日东), Chen Ying-Juan (陈英娟), Li Xiao-Wei (李晓苇), Fu Guang-Sheng (傅广生)
Hebei Key Laboratory of Optic-Electronic Information Material, College of PhysicsScience and Technology, Hebei University, Baoding 071002, China
Abstract  Microcrystalline silicon (μc-Si:H) solar cell with graded band gap microcrystalline silicon oxide (μc-SiOx:H) buffer layer is prepared by plasma enhanced chemical vapor deposition and exhibits improved performance compared with the cell without it. The buffer layer moderates the band gap mismatch by reducing the barrier of the p/i interface, which promotes the nucleation of the i-layer and effectively eliminates the incubation layer, and then enhances the collection efficiency of the cell in the short wavelength region of the spectrum. The p/i interface defect density also decreases from 2.2× 1012 cm-2 to 5.0× 1011 cm-2. This graded buffer layer allows to simplify the deposition process for the μc-Si:H solar cell application.
Keywords:  graded SiOx buffer layer      p/i interface      solar cells  
Received:  07 January 2015      Revised:  25 March 2015      Accepted manuscript online: 
PACS:  81.07.Bc (Nanocrystalline materials)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  88.40.H- (Solar cells (photovoltaics))  
Fund: Project supported by the Key Basic Research Project of Hebei Province, China (Grant Nos. 12963930D and 12963929D), the Natural Science Foundation of Hebei Province, China (Grant Nos. F2013201250 and E2012201059), and the Science and Technology Research Projects of the Education Department of Hebei Province, China (Grant No. ZH2012030).
Corresponding Authors:  Yu Wei, Li Xiao-Wei     E-mail:  hbuyuwei@126.com;laser@hbu.edu.cn

Cite this article: 

Shi Zhen-Liang (史振亮), Ji Yun (季云), Yu Wei (于威), Yang Yan-Bin (杨彦斌), Cong Ri-Dong (丛日东), Chen Ying-Juan (陈英娟), Li Xiao-Wei (李晓苇), Fu Guang-Sheng (傅广生) Improved performance of microcrystalline silicon solar cell with graded-band-gap silicon oxide buffer layer 2015 Chin. Phys. B 24 078105

[1] Cuony P, Marending M, Alexander D T L, Boccard M, Bugnon G, Despeisse M and Ballif C 2010 Appl. Phys. Lett. 97 213502
[2] Biron R M, Pahud C, Haug F J, Escarré J, Söderström K and Ballif C 2011 J. Appl. Phys. 110 124511
[3] Despeisse M, Battaglia C, Boccard M, Bugnon G, Charriére M, Cuony P, Hänni S, Löfgren L, Meillaud F, Parascandolo G, Söderström T and Ballif C 2011 Phys. Status Solidi A 208 1863
[4] Krajangsang T, Yunaz I A, Miyajima S and Konagai M 2010 Curr. Appl. Phys. 10 S357
[5] Lambertz A, Finger F, Holländer B, Rath J K and Schropp R E I 2012 J. Non-Cryst. Solids 358 1962
[6] Schwanitz K, Klein S, Stolley T, Rohde M, Severin D and Trassl R 2012 Sol. Energy Mater. Sol. Cells 105 187
[7] Biron R, Pahud C, Haug F J and Ballif C 2012 J. Non-Cryst. Solids 358 1958
[8] Wang G H, Zhang X D, Xu S Z, Zheng X X, Wei C C, Sun J, Xiong S Z, Geng X H and Zhao Y 2010 Chin. Phys. B 19 098102
[9] Lee C H, Jeon J W and Lim K S 2000 J. Appl. Phys. 87 8778
[10] Bugnon G, Parascandolo G, Hänni S, Stuckelberger M, Charriére M, Despeisse M, Meillaud F and Ballif C 2014 Sol. Energy Mater. Sol. Cells 120 143
[11] Myong S Y, Sriprapha K, Miyajima S, Konagai M and Yamada A 2007 Appl. Phys. Lett. 90 263509
[12] Yue G Z, Yan B J, Ganguly G, Yang J, Guha S and Teplin C W 2006 Appl. Phys. Lett. 88 263507
[13] Ihara H and Nozaki H 1990 Jpn. J. Appl. Phys. 29 L2159
[14] Liu S Y, Zeng X B, Peng W B, Xiao H B, Yao W J, Xie X B and Wang Z G 2011 J. Non-Cryst. Solids 357 121
[15] Fang J, Chen Z, Wang N, Bai L S, Hou G F, Chen X X, Wei C C, Wang G C, Sun J, Zhao Y and Zhang X D 2014 Sol. Energy Mater. Sol. Cells 128 394
[16] Stiebig H, Brammer T, Zimmer J, Vetterl O and Wagner H 2000 J. Non-Cryst. Solids 266 1104
[17] Yue G Z, Yan B J, Sivec L, Zhou Y H, Yang J and Guha S 2012 Sol. Energy Mater. Sol. Cells 104 109
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[3] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[4] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[5] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[6] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[7] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[8] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[9] A silazane additive for CsPbI2Br perovskite solar cells
Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼). Chin. Phys. B, 2022, 31(11): 110101.
[10] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[11] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[12] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[13] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[14] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[15] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
No Suggested Reading articles found!