Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 067201    DOI: 10.1088/1674-1056/24/6/067201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Low-temperature physical properties and electronic structures of Ni3Sb, Ni5Sb2, NiSb2, and NiSb

Luo Xiao-Ninga b, Dong Chengb, Liu Shi-Kaia, Zhang Zi-Pinga, Li Ao-Leib, Yang Li-Hongb, Li Xiao-Chuanb
a School of Material Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
b National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

We report the results of low temperature resistivity and magnetization measurements on polycrystalline samples of four Ni–Sb compounds, Ni3Sb, Ni5Sb2, NiSb, and NiSb2. Resistivity measurements revealed that these compounds exhibit a metallic type of electrical conductivity. Temperature dependences of the resistivities were well fitted by the generalized Bloch–Grüneisen formula with an exponent of n=3, indicating that the s–d interband scattering is the dominant scattering mechanism. The magnetic susceptibilities of Ni5Sb2, NiSb, and NiSb2 are almost independent of temperature (above 150 K), exhibiting Pauli paramagnetic behavior. The temperature dependences of the susceptibilities were fitted using the Curie–Weiss law. Ni3Sb was found to have a paramagnetic–ferromagnetic phase transition at 229 K.
First-principles calculations have been performed to investigate the electronic structures and physical properties of these Ni–Sb alloys. The calculation of the band structure predicted that Ni3Sb, Ni5Sb2, NiSb, and NiSb2 have characteristics of metal, and the ground state of Ni3Sb is ferromagnetic. The electrical and magnetic properties observed experimentally are consistent with that predicted by the first-principle electronic structure calculations.

Keywords:  Ni-Sb alloys      resistivity      susceptibility      electronic structure  
Received:  19 January 2015      Revised:  06 February 2015      Published:  05 June 2015
PACS:  72.15.Eb (Electrical and thermal conduction in crystalline metals and alloys)  
  75.20.En (Metals and alloys)  
  71.20.Be (Transition metals and alloys)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 21271183) and the National Basic Research Program of China (Grant Nos. 2011CBA00112 and 2011CB808202).

Corresponding Authors:  Dong Cheng     E-mail:  chengdon@aphy.iphy.ac.cn
About author:  72.15.Eb; 75.20.En; 71.20.Be

Cite this article: 

Luo Xiao-Ning, Dong Cheng, Liu Shi-Kai, Zhang Zi-Ping, Li Ao-Lei, Yang Li-Hong, Li Xiao-Chuan Low-temperature physical properties and electronic structures of Ni3Sb, Ni5Sb2, NiSb2, and NiSb 2015 Chin. Phys. B 24 067201

[1] Cava R J, Takagi H, Zandbergen H W, Krajewski J J, Peck W F, Siegrist T, Batlogg B, Vandover R B, Felder R J, Mizuhashi K, Lee J O, Eisaki H and Uchida S 1994 Nature 367 252
[2] Sinha S, Lynn J, Grigereit T, Hossain Z, Gupta L, Nagarajan R and Godart C 1995 Phys. Rev. B 51 681
[3] He T, Huang Q, Ramirez A P, Wang Y, Regan K A, Rogado N, Hayward M A, Haas M K, Slusky J S, Inumara K, Zandbergen H W, Ong N P and Cava R J 2001 Nature 411 54
[4] Uehara M, Yamazaki T, Kôri T, Kashida T, Kimishima Y and Hase I 2007 J. Phys. Soc. Jpn. 76 034714
[5] Uehara M, Uehara A, Kozawa K and Kimishima Y 2009 J. Phys. Soc. Jpn. 78 033702
[6] He B, Dong C, Yang L H, Chen X C, Ge L H, Mu L B and Shi Y G 2013 Supercond. Sci. Technol. 26 125015
[7] Watanabe T, Yanagi H, Kamiya T, Kamihara Y, Hiramatsu H, Hirano M and Hosono H 2007 Inorg. Chem. 46 7719
[8] Tegel M, Bichler D and Johrendt D 2008 Solid State Sci. 10 193
[9] Watanabe T, Yanagi H, Kamihara Y, Kamiya T, Hirano M and Hosono H 2008 J. Solid State Chem. 181 2117
[10] Buckow A, Retzlaff R, Kurian J and Alff L 2012 Phys. Procedia 27 300
[11] Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T and Hosono H 2006 J. Am. Chem. Soc. 128 10012
[12] Kodama K, Wakimoto S, Igawa N, Shamoto S, Mizoguchi H and Hosono H 2011 Phys. Rev. B 83 214512
[13] Kurian J, Buckow A, Retzlaff R and Alff L 2013 Physica C 484 171
[14] Flandorfer H, Sologub O, Godart C, Hiebl K, Rogl P and Ndl H 1996 Solid State Commun. 97 561
[15] Matthias B T 1953 Phys. Rev. 92 874
[16] Fujimori Y, Kan S I, Shinozaki B and Kawaguti T 2000 J. Phys. Soc. Jpn. 69 3017
[17] Vassilev G P R J and Wnuk G 2007 Int. J. Mater. Res. 98 468
[18] Zhang Y, Li C, Du Z and Guo C 2008 Calphad 32 378
[19] Minić D, Manasijević D, Ćsovic V, Todorović A, Dervišević I, Živković D and Dokić J 2011 Calphad 35 308
[20] Le Clanche M C, Députier S, Jégaden J C, Guérin R, Ballini Y and Guivarc'h A 1994 J. Alloys Compd. 206 21
[21] Heinrich S, Rexer H U and Schubert K 1978 J. Less Common Met. 60 65
[22] Naud J and Parijs D 1972 Mater. Res. Bull. 7 301
[23] Randl O G, Vogl G, Kaisermayr M, Buhrer W, Petry W and Pannetier J 1996 J. Phys.: Condens. Matter 8 7689
[24] Villevieille C, Ionica-Bousquet C M, Ducourant B, Jumas J C and Monconduit L 2007 J. Power Sources 172 388
[25] Yang Y W, Li T Y, Liu F, Zhu W B, Li X L, Wu Y C and Kong M G 2013 Microelectron. Eng. 104 1
[26] Xie J, Zhao X B, Yu H M, Qi H, Cao G S and Tu J P 2007 J. Alloys Compd. 441 231
[27] Xie J, Zhao X B, Cao G S, Zhao M J and Su S F 2005 J. Alloys Compd. 393 283
[28] Chen T, Rogowski D and White R 1978 J. Appl. Phys. 49 1425
[29] Kobayashi H, Kageshima M, Kimura N, Aoki H, Oohigashi M, Motizuki K and Kamimura T 2004 J. Magn. Magn. Mater. 272 E247
[30] Liu K G, Ji N J and Ma Z Q 2012 Adv. Mater. Res. 503 507
[31] Li C, Hu J, Peng Q and Wang X 2008 Mater. Chem. Phys. 110 106
[32] Dong C 1999 J. Appl. Crystallogr. 32 838
[33] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
[34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 18
[35] Vanderbilt D 1990 Phys. Rev. B 41 7892
[36] Hamann D, Schlüter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
[37] Naud J and Parijs D 1972 Mater. Res. Bull. 4 301
[38] Le Clanche M C, Deputier S, Jégaden J C, Guérin R, Ballini Y and Givarch A 1994 J. Alloys Compd. 206 21
[39] Holseth H and Kjekshus A 1968 Acta Chem. Scand. 22 3273
[40] Wilson A 1938 Proc. Roy. Soc. Lond. A 167 580
[41] Webb G W 1969 Phys. Rev. 181 1127
[42] Babizhetskyy V, Kotur B, Oryshchyn S, Zheng C, Kneidinger F, Leber L, Simson C, Bauer E and Michor H 2013 Solid State Commun. 164 1
[43] Zeppenfeld K and Jerrschko W 1993 J. Phys. Chem. Solids 54 1527
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[3] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[4] Growth and physical characterization of high resistivityFe: β-Ga2O3 crystals
Hao Zhang(张浩), Hui-Li Tang(唐慧丽), Nuo-Tian He(何诺天), Zhi-Chao Zhu(朱智超), Jia-Wen Chen(陈佳文), Bo Liu(刘波), Jun Xu(徐军). Chin. Phys. B, 2020, 29(8): 087201.
[5] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[6] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[7] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[8] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[9] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[10] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[11] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[12] Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026401.
[13] Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS
Zhongqiang Suo(索忠强), Jianfeng Dai(戴剑锋), Shanshan Gao(高姗姗), and Haoran Gao(高浩然)$. Chin. Phys. B, 2020, 29(11): 117502.
[14] Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation
T Zhang(张腾), G Li(李岗), S C Sun(孙淑翠), N Qin(秦娜), L Kang(康璐), S H Yao(姚淑华), H M Weng(翁红明), S K Mo, L Li(李璐), Z K Liu(柳仲楷), L X Yang(杨乐仙), Y L Chen(陈宇林). Chin. Phys. B, 2020, 29(1): 017304.
[15] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
No Suggested Reading articles found!