Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 067201    DOI: 10.1088/1674-1056/24/6/067201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Low-temperature physical properties and electronic structures of Ni3Sb, Ni5Sb2, NiSb2, and NiSb

Luo Xiao-Ning (罗肖宁)a b, Dong Cheng (董成)b, Liu Shi-Kai (刘世凯)a, Zhang Zi-Ping (张子平)a, Li Ao-Lei (李傲雷)b, Yang Li-Hong (杨立红)b, Li Xiao-Chuan (李晓川)b
a School of Material Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
b National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

We report the results of low temperature resistivity and magnetization measurements on polycrystalline samples of four Ni–Sb compounds, Ni3Sb, Ni5Sb2, NiSb, and NiSb2. Resistivity measurements revealed that these compounds exhibit a metallic type of electrical conductivity. Temperature dependences of the resistivities were well fitted by the generalized Bloch–Grüneisen formula with an exponent of n=3, indicating that the s–d interband scattering is the dominant scattering mechanism. The magnetic susceptibilities of Ni5Sb2, NiSb, and NiSb2 are almost independent of temperature (above 150 K), exhibiting Pauli paramagnetic behavior. The temperature dependences of the susceptibilities were fitted using the Curie–Weiss law. Ni3Sb was found to have a paramagnetic–ferromagnetic phase transition at 229 K.
First-principles calculations have been performed to investigate the electronic structures and physical properties of these Ni–Sb alloys. The calculation of the band structure predicted that Ni3Sb, Ni5Sb2, NiSb, and NiSb2 have characteristics of metal, and the ground state of Ni3Sb is ferromagnetic. The electrical and magnetic properties observed experimentally are consistent with that predicted by the first-principle electronic structure calculations.

Keywords:  Ni-Sb alloys      resistivity      susceptibility      electronic structure  
Received:  19 January 2015      Revised:  06 February 2015      Accepted manuscript online: 
PACS:  72.15.Eb (Electrical and thermal conduction in crystalline metals and alloys)  
  75.20.En (Metals and alloys)  
  71.20.Be (Transition metals and alloys)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 21271183) and the National Basic Research Program of China (Grant Nos. 2011CBA00112 and 2011CB808202).

Corresponding Authors:  Dong Cheng     E-mail:  chengdon@aphy.iphy.ac.cn
About author:  72.15.Eb; 75.20.En; 71.20.Be

Cite this article: 

Luo Xiao-Ning (罗肖宁), Dong Cheng (董成), Liu Shi-Kai (刘世凯), Zhang Zi-Ping (张子平), Li Ao-Lei (李傲雷), Yang Li-Hong (杨立红), Li Xiao-Chuan (李晓川) Low-temperature physical properties and electronic structures of Ni3Sb, Ni5Sb2, NiSb2, and NiSb 2015 Chin. Phys. B 24 067201

[1] Cava R J, Takagi H, Zandbergen H W, Krajewski J J, Peck W F, Siegrist T, Batlogg B, Vandover R B, Felder R J, Mizuhashi K, Lee J O, Eisaki H and Uchida S 1994 Nature 367 252
[2] Sinha S, Lynn J, Grigereit T, Hossain Z, Gupta L, Nagarajan R and Godart C 1995 Phys. Rev. B 51 681
[3] He T, Huang Q, Ramirez A P, Wang Y, Regan K A, Rogado N, Hayward M A, Haas M K, Slusky J S, Inumara K, Zandbergen H W, Ong N P and Cava R J 2001 Nature 411 54
[4] Uehara M, Yamazaki T, Kôri T, Kashida T, Kimishima Y and Hase I 2007 J. Phys. Soc. Jpn. 76 034714
[5] Uehara M, Uehara A, Kozawa K and Kimishima Y 2009 J. Phys. Soc. Jpn. 78 033702
[6] He B, Dong C, Yang L H, Chen X C, Ge L H, Mu L B and Shi Y G 2013 Supercond. Sci. Technol. 26 125015
[7] Watanabe T, Yanagi H, Kamiya T, Kamihara Y, Hiramatsu H, Hirano M and Hosono H 2007 Inorg. Chem. 46 7719
[8] Tegel M, Bichler D and Johrendt D 2008 Solid State Sci. 10 193
[9] Watanabe T, Yanagi H, Kamihara Y, Kamiya T, Hirano M and Hosono H 2008 J. Solid State Chem. 181 2117
[10] Buckow A, Retzlaff R, Kurian J and Alff L 2012 Phys. Procedia 27 300
[11] Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T and Hosono H 2006 J. Am. Chem. Soc. 128 10012
[12] Kodama K, Wakimoto S, Igawa N, Shamoto S, Mizoguchi H and Hosono H 2011 Phys. Rev. B 83 214512
[13] Kurian J, Buckow A, Retzlaff R and Alff L 2013 Physica C 484 171
[14] Flandorfer H, Sologub O, Godart C, Hiebl K, Rogl P and Ndl H 1996 Solid State Commun. 97 561
[15] Matthias B T 1953 Phys. Rev. 92 874
[16] Fujimori Y, Kan S I, Shinozaki B and Kawaguti T 2000 J. Phys. Soc. Jpn. 69 3017
[17] Vassilev G P R J and Wnuk G 2007 Int. J. Mater. Res. 98 468
[18] Zhang Y, Li C, Du Z and Guo C 2008 Calphad 32 378
[19] Minić D, Manasijević D, Ćsovic V, Todorović A, Dervišević I, Živković D and Dokić J 2011 Calphad 35 308
[20] Le Clanche M C, Députier S, Jégaden J C, Guérin R, Ballini Y and Guivarc'h A 1994 J. Alloys Compd. 206 21
[21] Heinrich S, Rexer H U and Schubert K 1978 J. Less Common Met. 60 65
[22] Naud J and Parijs D 1972 Mater. Res. Bull. 7 301
[23] Randl O G, Vogl G, Kaisermayr M, Buhrer W, Petry W and Pannetier J 1996 J. Phys.: Condens. Matter 8 7689
[24] Villevieille C, Ionica-Bousquet C M, Ducourant B, Jumas J C and Monconduit L 2007 J. Power Sources 172 388
[25] Yang Y W, Li T Y, Liu F, Zhu W B, Li X L, Wu Y C and Kong M G 2013 Microelectron. Eng. 104 1
[26] Xie J, Zhao X B, Yu H M, Qi H, Cao G S and Tu J P 2007 J. Alloys Compd. 441 231
[27] Xie J, Zhao X B, Cao G S, Zhao M J and Su S F 2005 J. Alloys Compd. 393 283
[28] Chen T, Rogowski D and White R 1978 J. Appl. Phys. 49 1425
[29] Kobayashi H, Kageshima M, Kimura N, Aoki H, Oohigashi M, Motizuki K and Kamimura T 2004 J. Magn. Magn. Mater. 272 E247
[30] Liu K G, Ji N J and Ma Z Q 2012 Adv. Mater. Res. 503 507
[31] Li C, Hu J, Peng Q and Wang X 2008 Mater. Chem. Phys. 110 106
[32] Dong C 1999 J. Appl. Crystallogr. 32 838
[33] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
[34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 18
[35] Vanderbilt D 1990 Phys. Rev. B 41 7892
[36] Hamann D, Schlüter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
[37] Naud J and Parijs D 1972 Mater. Res. Bull. 4 301
[38] Le Clanche M C, Deputier S, Jégaden J C, Guérin R, Ballini Y and Givarch A 1994 J. Alloys Compd. 206 21
[39] Holseth H and Kjekshus A 1968 Acta Chem. Scand. 22 3273
[40] Wilson A 1938 Proc. Roy. Soc. Lond. A 167 580
[41] Webb G W 1969 Phys. Rev. 181 1127
[42] Babizhetskyy V, Kotur B, Oryshchyn S, Zheng C, Kneidinger F, Leber L, Simson C, Bauer E and Michor H 2013 Solid State Commun. 164 1
[43] Zeppenfeld K and Jerrschko W 1993 J. Phys. Chem. Solids 54 1527
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[4] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[5] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[8] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[9] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[10] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[11] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[12] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[13] Synthesis and study the influence of yttrium doping on band structure, optical, non-linear optical and dielectric results for Ca12Al14O33 (C12A7) single crystals grown using traveling-solvent floating zone (TSFZ) method
A. Abdel Moez, Ahmed I. Ali, and A. Tayel. Chin. Phys. B, 2022, 31(1): 018103.
[14] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[15] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
No Suggested Reading articles found!