Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 024221    DOI: 10.1088/1674-1056/24/2/024221
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

First-principles study of structure and nonlinear optical properties of CdHg(SCN)4 crystal

Zhang Penga, Kong Chui-Ganga, Zheng Chaoa, Wang Xin-Qiangb, Ma Yuea, Feng Jin-Boa, Jiao Yu-Qiua, Lu Gui-Wua
a College of Science, China University of Petroleum, Beijing 102249, China;
b State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  The geometric structure, electronic structure, and optical properties of CdHg(SCN)4 crystal are calculated by using the density functional perturbation theory and Green function screening Coulomb interaction approximation. The band gap of CdHg(SCN)4 crystal is calculated to be 3.198 eV, which is in good agreement with the experimental value 3.265 eV. The calculated second-order nonlinear optical coefficients are d14=1.2906 pm/V and d15=5.0928 pm/V, which are in agreement with the experimental results (d14=(1.4± 0.6) pm/V and d15=(6.0± 0.9) pm/V). Moreover, it is found that the contribution to the valence band mainly comes from Cd-4d, Hg-5d states, and the contributions to the valence band top and the conduction band bottom predominantly come from C-2p, N-2p, and S-3p states. The second-order nonlinear optical effect of CdHg(SCN)4 crystal results mainly from the internal electronic transition of (SCN)-.
Keywords:  CdHg(SCN)4 crystal      nonlinear optical properties      band gap      Green function screening Coulomb interaction approximation      density functional perturbation theory  
Received:  06 May 2014      Revised:  07 July 2014      Published:  05 February 2015
PACS:  42.70.Mp (Nonlinear optical crystals)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51372140), the Youth Scientist Fund of Shandong Province, China (Grant No. BS2011CL025), and the Basic Discipline Research Fund of China University of Petroleum, Beijing, China (Grant No. 01JB0169).
Corresponding Authors:  Lu Gui-Wu     E-mail:  lugw@cup.edu.cn

Cite this article: 

Zhang Peng, Kong Chui-Gang, Zheng Chao, Wang Xin-Qiang, Ma Yue, Feng Jin-Bo, Jiao Yu-Qiu, Lu Gui-Wu First-principles study of structure and nonlinear optical properties of CdHg(SCN)4 crystal 2015 Chin. Phys. B 24 024221

[1] Yuan D R, Xu D, Liu M G, Yu W T, Fang Q, Hou W B, Bing Y H, Sun S Y and Jiang M H 1996 Chin. Sci. Bull. 41 1572
[2] Chen D, Xiao H Y, Jia W, Chen H, Zhou H G, Li Y, Ding K N and Zhang Y F 2012 Acta Phys. Sin. 61 127103 (in Chinese)
[3] Yu B H and Chen D 2014 Acta Phys. Sin. 63 047101 (in Chinese)
[4] Usuda M, Hamada N, Kotani T and Schilfgaarde M 2002 Phys. Rev. B 66 125101
[5] Zhu X J and Louie S G 1991 Phys. Rev. B 43 14142
[6] Lu T Y and Huang M C 2007 Chin. Phys. 16 62
[7] Patterson C H 2006 Phys. Rev. B 74 144432
[8] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[9] Jiang H 2010 Acta Phys. Chim. Sin. 26 1017
[10] Qian S X and Wang G M 2001 Nonlinear Optics (Shanghai: Fudan University Press) pp. 28-31, 67-69, 577-578 (in Chinese)
[11] Marek V 2005 "First-principles Study of the Nonlinear Responses of Insulators to Electric Fields: Applications to Ferroelectric Oxides" (Ph. D. Dissertation) (De Liege: Faculté des Sciences of University De Liege)
[12] Gonze X, Rignanese G M, Verstraete M, Beuken J M, Pouillon Y, Caracas R, Jollet F, Torrent M, Zerah G, Mikami M, Ghosez P, Veithen M, Raty J Y, Olevano V, Bruneval F, Reining L, Godby R, Onida G, Hamann D R and Allan D C 2005 Z. Kristallogr 220 558
[13] Hamann D R, Schlüter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
[14] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[15] Yan Y X, Feng Q, Yuan D R, Tian Y P, Liu Z, Wang X M, Jiang M H, Williams D, Siu A and Cai Z G 1999 Chin. Chem. Lett. 10 257
[16] Yuan D R, Xu D, Liu M G, Qi F, Yu W T, Hou W B, BingY H, Sun S Y, Liu M H and Liu J 1997 Appl. Phys. Lett. 70 544
[17] Zhang G H, Liu M G, Xu D and Yuan D R 2000 J. Mater. Sci. Lett. 19 1255
[18] Lin Z S, Wang Z Z, Chen C T and Li M X 2001 Acta Phys. Sin. 50 1145 (in Chinese)
[1] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[2] Photoluminescence in wide band gap corundum Mg4Ta2O9 single crystals
Liang Li(李亮), Yu-Lu Zheng(郑雨露), Yu-Xin Hu(胡雨馨), Fang-Fei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(8): 083301.
[3] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[4] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[5] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[6] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
[7] One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range
Sepehr Razi, Fatemeh Ghasemi. Chin. Phys. B, 2019, 28(12): 124205.
[8] Interlayer distance effects on absorption coefficient and refraction index change in p-type double-δ-doped GaAs quantum wells
H Noverola-Gamas, L M Gaggero-Sager, O Oubram. Chin. Phys. B, 2019, 28(12): 124207.
[9] Electronic structure of YbB6 dependent on onsite Coulomb interaction U and internal parameter of B atom
Hong-Bin Wang(王宏斌), Li Zhang(张莉), Jie Duan(段婕). Chin. Phys. B, 2019, 28(11): 116201.
[10] Thermal conductivity of systems with a gap in the phonon spectrum
E Salamatov. Chin. Phys. B, 2018, 27(7): 076502.
[11] Propagation of acoustic waves in a fluid-filled pipe with periodic elastic Helmholtz resonators
Dian-Long Yu(郁殿龙), Hui-Jie Shen(沈惠杰), Jiang-Wei Liu(刘江伟), Jian-Fei Yin(尹剑飞), Zhen-Fang Zhang(张振方), Ji-Hong Wen(温激鸿). Chin. Phys. B, 2018, 27(6): 064301.
[12] Using the HgxMg(1-x) Te ternary compound as a room temperature photodetector: The electronic structure, charge transport, and response function of the energetic electromagnetic radiation
Ghasemi Hasan, Mokhtari Ali. Chin. Phys. B, 2018, 27(5): 053101.
[13] Comment on “Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals” by Si-Qi Zhang et al.
Hai-Feng Zhang(章海锋). Chin. Phys. B, 2018, 27(1): 014205.
[14] Improved photovoltaic effects in Mn-doped BiFeO3 ferroelectric thin films through band gap engineering
Tang-Liu Yan(阎堂柳), Bin Chen(陈斌), Gang Liu(刘钢), Rui-Peng Niu(牛瑞鹏), Jie Shang(尚杰), Shuang Gao(高双), Wu-Hong Xue(薛武红), Jing Jin(金晶), Jiu-Ru Yang(杨九如), Run-Wei Li(李润伟). Chin. Phys. B, 2017, 26(6): 067702.
[15] Dynamically controlled optical nonreciprocity of a double-ladder system with spontaneously generated coherence in moving atomic optical lattice
Nuo Ba(巴诺), Xiang-Yao Wu(吴向尧), Dong-Fei Li(李东飞), Dan Wang(王丹), Jin-You Fei(费金有), Lei Wang(王磊). Chin. Phys. B, 2017, 26(5): 054207.
No Suggested Reading articles found!