Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 117901    DOI: 10.1088/1674-1056/24/11/117901
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Characteristics of charge and discharge of PMMA samples due to electron irradiation

Feng Guo-Bao (封国宝)a, Wang Fang (王芳)a, Hu Tian-Cun (胡天存)b, Cao Meng (曹猛)a
a Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
b National Key Laboratory of Science and Technology on Space Microwave, Xi’an 710000, China
Abstract  In this study, using a comprehensive numerical simulation of charge and discharge processes, we investigate the formation and evolution of negative charge and discharge characteristics of a grounded PMMA film irradiated by a non-focused electron beam. Electron scattering and transport processes in the sample are simulated with the Monte Carlo and the finite-different time-domain (FDTD) methods, respectively. The properties of charge and discharge processes are presented by the evolution of internal currents, charge quantity, surface potential, and discharge time. Internal charge accumulation in the sample may reach saturation by primary electron (PE) irradiation providing the charge duration is enough. Internal free electrons will run off to the ground in the form of leakage current due to charge diffusion and drift during the discharge process after irradiation, while trapped electrons remain. The negative surface potential determined by the charging quantity decreases to its saturation in the charge process, and then increases in the discharge process. A larger thickness of the PMMA film will result in greater charge amount and surface potential in charge saturation and in final discharge state, while the electron mobility of the material has little effects on the final discharge state. Moreover, discharge time is less for smaller thickness or larger electron mobility. The presented results can be helpful for estimating and weakening the charging of insulating samples especially under the intermittent electron beam irradiation in related surface analysis or measurement.
Keywords:  charge and discharge      PMMA      numerical simulation      electron irradiation  
Received:  12 May 2015      Revised:  04 June 2015      Accepted manuscript online: 
PACS:  79.20.Ap (Theory of impact phenomena; numerical simulation)  
  72.20.Dp (General theory, scattering mechanisms)  
  02.70.Uu (Applications of Monte Carlo methods)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175140 and 11004157) and the Foundation of National Key Laboratory of Space Microwave Technology of China (Grant No. 9140C530101130C53013).
Corresponding Authors:  Wang Fang     E-mail:  wangfang@mail.xjtu.edu.cn

Cite this article: 

Feng Guo-Bao (封国宝), Wang Fang (王芳), Hu Tian-Cun (胡天存), Cao Meng (曹猛) Characteristics of charge and discharge of PMMA samples due to electron irradiation 2015 Chin. Phys. B 24 117901

[1] Oatley C W, Nixon W C and Pease R F W;1966 Adv. Electron. Electron Phys. 21 181
[2] Hawkes P W;2012 Ultramicroscopy 119 9
[3] Cazaux J 2010 J. Electron Spectrosc. Relat. Phenom. 176 58
[4] Ciappa M, Koschik A, Dapor M and Fichtner W 2010 Microelectron. Reliab. 50 1407
[5] Cornet N, Goeuriot D, Touzin M, Guerret-Piecourt C, Juve D, Treheux D and Fitting H J;2009 J. Non-Cryst. Solids 355 1111
[6] Ura K 1998 J. Electron Microsc. 47 143
[7] Li W Q and Zhang H B 2010 Appl. Surf. Sci. 256 3482
[8] Xiao P, Zhang Z M, Sun X and Ding Z J 2006 Acta Phys. Sin. 55 5803 (in Chinese)
[9] Zhang H B, Li W Q and Cao M;2012 J. Electron Microsc. 61 85
[10] Cao M, Wang F, Liu J and Zhang H B;2012 Chin. Phys. B 21 127901
[11] Vila F, Sessler G M and Sykja H;2005 J. Electrost. 63 749
[12] Hiro S, Tsuji K and Fujii H;1999 Electr. Eng. Jpn. 129 10
[13] Miyoshi M and Ura K 2005 J. Vac. Sci. Technol. B 23 2763
[14] Czeremuszkin G, LatrecheMandWertheimerMR 2001 Nucl. Instrum. Meth. B 185 88
[15] Babin S, Borisov S and Ivanchikov A;2009 Proc. SPIE 7378 737818
[16] Fakhfakh S, Jbara O and Fakhfakh Z;2009 Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom. p. 232
[17] Hillenbrand J, Motz T, Sessler G M, Zhang X, Behrendt N, von Salis-Soglio C, Erhard D P, Altstaedt V and Schmidt H W;2009 J. Phys. D: Appl. Phys. 42 065410
[18] Sessler G M, Figueiredo M T and Ferreira G F L;2004 IEEE Trans. Dielectr. Electr. Insul. 11 192
[19] Sessler G M 1992 IEEE Trans. Electr. Insul. 27 961
[20] Min D M, Li S T, Cho M G and Khan A R 2013 IEEE Trans. Plasma Sci. 41 3349
[21] Qin X G, He D Y and Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese)
[22] Ohya K, Inai K, Kuwada H, Hayashi T and Saito M;2008 Surf. Coat. Technol. 202 5310
[23] Askri B, Raouadi K, Renoud R and Yangui B;2009 J. Electrost. 67 695
[24] Fakhfakh S, Jbara O, Rondot S, Hadjadj A and Fakhfakh Z;2012 J. Non-Cryst. Solids 358 1157
[25] Feng G B, Cao M, Yan L P and Zhang H B;2013 Micron 52 62
[26] Li W Q and Zhang H B 2008 Acta Phys. Sin. 57 3219 (in Chinese)
[27] Boubaya M and Blaise G;2007 Eur. Phys. J. Appl. Phys. 37 79
[28] Huang J G and Chen D 2004 Acta Phys. Sin. 53 961 (in Chinese)
[29] Czyzewski Z, MacCallum D O, Romig A and Joy D C;1990 J. Appl. Phys. 68 3066
[30] http://web.utk.edu/srcutk/Mott/mott.htm.
[31] Joy D C;1995 Monte Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press)
[32] Penn D R 1987 Phys. Rev. B 35 482
[33] Xie A G, Song B and Zhao H F 2008 J. Anhui University 32 3 (in Chinese)
[34] Akbari D, Soltani N and Farahani M 2013 P. I. Mech. Eng. B-J. Eng. 227 430
[35] Liu J and Zhang H B 2014 Surf Rev Lett 21 1450062
[36] Elsafi B, Fakhfakh S, Fakhfakh Z and Jbara O 2011 Nucl. Instrum. Meth. B 269 2715
[37] Zheng F H, Zhang Y W, Xia J F, Xiao C and An Z L;2009 J. Appl. Phys. 106 064105
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[13] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[14] Irradiation behavior and recovery effect of ferroelectric properties of PZT thin films
Yu Zhao(赵瑜), Wen-Yue Zhao(赵文悦), Dan-Dan Ju(琚丹丹), Yue-Yue Yao(姚月月), Hao Wang(王豪), Cheng-Yue Sun(孙承月), Ya-Zhou Peng(彭亚洲), Yi-Yong Wu(吴宜勇), and Wei-Dong Fei(费维栋). Chin. Phys. B, 2021, 30(10): 107702.
[15] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
No Suggested Reading articles found!