Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 117802    DOI: 10.1088/1674-1056/24/11/117802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Design of broad angular phase retarders for the complete polarization analysis of extreme ultraviolet radiation

Lin Cheng-You (林承友)a, Chen Shu-Jing (陈淑静)b, Chen Zhao-Yang (陈朝阳)a, Ding Ying-Chun (丁迎春)a
a College of Science, Beijing University of Chemical Technology, Beijing 100029, China;
b Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Abstract  A method of designing broad angular phase retarders in the extreme ultraviolet (EUV) region is presented. The design is based on a standard Levenberg-Marquardt algorithm combined with a common merit function. Using this method, a series of broad angular EUV phase retarders were designed using aperiodic Mo/Si multilayers. At photon energy of 90 eV, broad angular phase retarders with 30°, 60°, and 90° phase retardations have been realized in the angular range of 39°-51°. By analyzing and comparing the performances of the designed broad angular phase retarders, we found that the Mo/Si multilayer with more layers could obtain higher phase retardation in broader angular range when used to design the broad angular phase retarder. Broad angular phase retarders possess lower sensitivity toward changing incident angle compared with the traditional phase retarders designed with transmission periodic multilayers, and can be used for the polarization control of broad angular EUV sources.
Keywords:  broad angular phase retarders      extreme ultraviolet radiation      polarization analysis  
Received:  24 March 2015      Revised:  12 June 2015      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  41.50.+h (X-ray beams and x-ray optics)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant Nos. JD1517, ZY1349, and 2652014012).
Corresponding Authors:  Lin Cheng-You     E-mail:  cylin@mail.buct.edu.cn

Cite this article: 

Lin Cheng-You (林承友), Chen Shu-Jing (陈淑静), Chen Zhao-Yang (陈朝阳), Ding Ying-Chun (丁迎春) Design of broad angular phase retarders for the complete polarization analysis of extreme ultraviolet radiation 2015 Chin. Phys. B 24 117802

[1] Chen C T, Sette F, Ma Y and Modesti S 1990 Phys. Rev. B 42 7262
[2] Li Z M, Xu F Q X, Wang L W, Wang J, Zhu J F and Zhang W H 2007 Chin. Phys. Lett. 24 2667
[3] He Z X, Zheng H Z, Huang X J, Wang H L and Zhao J H 2014 Chin. Phys. B 23 077801
[4] Chen K, Cui M Q, Yan F, Zhao J, Sun L J, Zheng L, Ma C Y, Xi S B and Zhao Y D 2008 Chin. Phys. Lett. 25 1110
[5] Dong L J, Du G Q, Yang C Q and Shi Y L 2012 Acta Phys. Sin. 61 164210 (in Chinese)
[6] Fonzo S D, Jark W, Schäfers F, Petersen H, Gaupp A and Underwood J 1994 Appl. Opt. 33 2624
[7] Schäfers F, Mertins H C, Gaupp A, Gudat W, Mertin M, Packe I, Schmolla F, Di Fonzo S, Soullié G and Jark W 1999 Appl. Opt. 38 4074
[8] Kortright J and Underwood J 1990 Nucl. Instrum. Meth. A 291 272
[9] Kortright J, Kimura H, Nikitin V, Mayama K, Yamamoto M and Yanagihara M 1992 Appl. Phys. Lett. 60 2963
[10] Nomura H, Mayama K, Sasaki T, Yamamoto M and Yanagihara M 1992 Proceeding of the SPIE, October 20, 1992, Tokyo, Japan, p. 395
[11] Yamamoto M, Yanagihara M, Nomura H, Mayama K and Kimura H 1992 Rev. Sci. Instrum. 63 1510
[12] Kimura H, Yamamoto M, Yanagihara M, Maehara T and Namioka T 1992 Rev. Sci. Instrum. 63 1379
[13] Kimura H, Miyahara T, Goto Y, Mayama K, Yanagihara M and Yamamoto M 1995 Rev. Sci. Instrum. 66 1920
[14] Wang H C, Bencok P, Steadman P, Longhi E, Zhu J T and Wang Z S 2012 J. Synchrotron Radiat. 19 944
[15] Wang Z S, Wang H C, Zhu J T, Zhang Z, Xu Y, Zhang S M, Wu W J, Wang F L, Wang B and Liu L Q 2007 Appl. Phys. Lett. 90 031901
[16] Wang Z S, Wang H C, Zhu J T, Zhang Z, Wang F L, Xu Y, Zhang S M, Wu W J, Chen L Y and Michette A G 2007 Appl. Phys. Lett. 90 081910
[17] Yamamoto M, Nomura H, Yanagihara M, Furudate M and Watanabe M 1999 J. Electron. Spectrosc. 101-103 869
[18] Kim D E, Lee S M and Jeon I J 1999 J. Vac. Sci. Tec. A 17 398
[19] Rakowski R, Bartnik A, Fiedorowicz H, De Dortan F D G, Jarocki R, Kostecki J, Mikołajczyk J, Ryć L, Szczurek M and Wachulak P 2010 Appl. Phys. B 101 773
[20] Feigl T, Yulin S, Benoit N and Kaiser N 2006 Microelectron. Eng. 83 703
[21] Wonisch A, Neuhäusler U, Kabachnik N, Uphues T, Uiberacker M, Yakovlev V, Krausz F, Drescher M, Kleineberg U and Heinzmann U 2006 Appl. Opt. 45 4147
[22] Wang Z S, Wang H C, Zhu J T, Wang F L, Gu Z X, Chen L Y, Michette A G, Powell A K, Pfauntsch S J and Schäfers F 2006 J. Appl. Phys. 99 056108
[23] Wang Z S, Wang H C, Zhu J T, Wang F L, Gu Z X, Chen L Y, Michette A G, Powell A K, Pfauntsch S J and Schäfers F 2006 Opt. Express 14 2533
[24] Moré J J 1978 Numerical Analysis (Berlin: Springer-Verlag) pp. 105-116
[25] Henke B L, Gullikson E M and Davis J C 1993 At. Data Nucl. Data Tables 54 181
[26] Aquila A, Salmassi F, Dollar F, Liu Y and Gullikson E 2006 Opt. Express 14 10073
[27] Xie C Q, Zhu X L, Li H L, Niu J B, Hua Y L and Shi L N 2013 Opt. Eng. 52 033402
[1] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[5] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[6] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[7] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[8] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[9] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[10] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[11] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[12] Design method of reusable reciprocal invisibility and phantom device
Cheng-Fu Yang(杨成福), Li-Jun Yun(云利军), and Jun-Wei Li(李俊玮). Chin. Phys. B, 2022, 31(8): 084101.
[13] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[14] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[15] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
No Suggested Reading articles found!