CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Design of broad angular phase retarders for the complete polarization analysis of extreme ultraviolet radiation |
Lin Cheng-You (林承友)a, Chen Shu-Jing (陈淑静)b, Chen Zhao-Yang (陈朝阳)a, Ding Ying-Chun (丁迎春)a |
a College of Science, Beijing University of Chemical Technology, Beijing 100029, China; b Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China |
|
|
Abstract A method of designing broad angular phase retarders in the extreme ultraviolet (EUV) region is presented. The design is based on a standard Levenberg-Marquardt algorithm combined with a common merit function. Using this method, a series of broad angular EUV phase retarders were designed using aperiodic Mo/Si multilayers. At photon energy of 90 eV, broad angular phase retarders with 30°, 60°, and 90° phase retardations have been realized in the angular range of 39°-51°. By analyzing and comparing the performances of the designed broad angular phase retarders, we found that the Mo/Si multilayer with more layers could obtain higher phase retardation in broader angular range when used to design the broad angular phase retarder. Broad angular phase retarders possess lower sensitivity toward changing incident angle compared with the traditional phase retarders designed with transmission periodic multilayers, and can be used for the polarization control of broad angular EUV sources.
|
Received: 24 March 2015
Revised: 12 June 2015
Accepted manuscript online:
|
PACS:
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
41.50.+h
|
(X-ray beams and x-ray optics)
|
|
42.79.-e
|
(Optical elements, devices, and systems)
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant Nos. JD1517, ZY1349, and 2652014012). |
Corresponding Authors:
Lin Cheng-You
E-mail: cylin@mail.buct.edu.cn
|
Cite this article:
Lin Cheng-You (林承友), Chen Shu-Jing (陈淑静), Chen Zhao-Yang (陈朝阳), Ding Ying-Chun (丁迎春) Design of broad angular phase retarders for the complete polarization analysis of extreme ultraviolet radiation 2015 Chin. Phys. B 24 117802
|
[1] |
Chen C T, Sette F, Ma Y and Modesti S 1990 Phys. Rev. B 42 7262
|
[2] |
Li Z M, Xu F Q X, Wang L W, Wang J, Zhu J F and Zhang W H 2007 Chin. Phys. Lett. 24 2667
|
[3] |
He Z X, Zheng H Z, Huang X J, Wang H L and Zhao J H 2014 Chin. Phys. B 23 077801
|
[4] |
Chen K, Cui M Q, Yan F, Zhao J, Sun L J, Zheng L, Ma C Y, Xi S B and Zhao Y D 2008 Chin. Phys. Lett. 25 1110
|
[5] |
Dong L J, Du G Q, Yang C Q and Shi Y L 2012 Acta Phys. Sin. 61 164210 (in Chinese)
|
[6] |
Fonzo S D, Jark W, Schäfers F, Petersen H, Gaupp A and Underwood J 1994 Appl. Opt. 33 2624
|
[7] |
Schäfers F, Mertins H C, Gaupp A, Gudat W, Mertin M, Packe I, Schmolla F, Di Fonzo S, Soullié G and Jark W 1999 Appl. Opt. 38 4074
|
[8] |
Kortright J and Underwood J 1990 Nucl. Instrum. Meth. A 291 272
|
[9] |
Kortright J, Kimura H, Nikitin V, Mayama K, Yamamoto M and Yanagihara M 1992 Appl. Phys. Lett. 60 2963
|
[10] |
Nomura H, Mayama K, Sasaki T, Yamamoto M and Yanagihara M 1992 Proceeding of the SPIE, October 20, 1992, Tokyo, Japan, p. 395
|
[11] |
Yamamoto M, Yanagihara M, Nomura H, Mayama K and Kimura H 1992 Rev. Sci. Instrum. 63 1510
|
[12] |
Kimura H, Yamamoto M, Yanagihara M, Maehara T and Namioka T 1992 Rev. Sci. Instrum. 63 1379
|
[13] |
Kimura H, Miyahara T, Goto Y, Mayama K, Yanagihara M and Yamamoto M 1995 Rev. Sci. Instrum. 66 1920
|
[14] |
Wang H C, Bencok P, Steadman P, Longhi E, Zhu J T and Wang Z S 2012 J. Synchrotron Radiat. 19 944
|
[15] |
Wang Z S, Wang H C, Zhu J T, Zhang Z, Xu Y, Zhang S M, Wu W J, Wang F L, Wang B and Liu L Q 2007 Appl. Phys. Lett. 90 031901
|
[16] |
Wang Z S, Wang H C, Zhu J T, Zhang Z, Wang F L, Xu Y, Zhang S M, Wu W J, Chen L Y and Michette A G 2007 Appl. Phys. Lett. 90 081910
|
[17] |
Yamamoto M, Nomura H, Yanagihara M, Furudate M and Watanabe M 1999 J. Electron. Spectrosc. 101-103 869
|
[18] |
Kim D E, Lee S M and Jeon I J 1999 J. Vac. Sci. Tec. A 17 398
|
[19] |
Rakowski R, Bartnik A, Fiedorowicz H, De Dortan F D G, Jarocki R, Kostecki J, Mikołajczyk J, Ryć L, Szczurek M and Wachulak P 2010 Appl. Phys. B 101 773
|
[20] |
Feigl T, Yulin S, Benoit N and Kaiser N 2006 Microelectron. Eng. 83 703
|
[21] |
Wonisch A, Neuhäusler U, Kabachnik N, Uphues T, Uiberacker M, Yakovlev V, Krausz F, Drescher M, Kleineberg U and Heinzmann U 2006 Appl. Opt. 45 4147
|
[22] |
Wang Z S, Wang H C, Zhu J T, Wang F L, Gu Z X, Chen L Y, Michette A G, Powell A K, Pfauntsch S J and Schäfers F 2006 J. Appl. Phys. 99 056108
|
[23] |
Wang Z S, Wang H C, Zhu J T, Wang F L, Gu Z X, Chen L Y, Michette A G, Powell A K, Pfauntsch S J and Schäfers F 2006 Opt. Express 14 2533
|
[24] |
Moré J J 1978 Numerical Analysis (Berlin: Springer-Verlag) pp. 105-116
|
[25] |
Henke B L, Gullikson E M and Davis J C 1993 At. Data Nucl. Data Tables 54 181
|
[26] |
Aquila A, Salmassi F, Dollar F, Liu Y and Gullikson E 2006 Opt. Express 14 10073
|
[27] |
Xie C Q, Zhu X L, Li H L, Niu J B, Hua Y L and Shi L N 2013 Opt. Eng. 52 033402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|