Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 114202    DOI: 10.1088/1674-1056/24/11/114202

Sub-Poissonian photon emission in coupled double quantum dots–cavity system

Ye Han, Peng Yi-Wei, Yu Zhong-Yuan, Zhang Wen, Liu Yu-Min
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  In this work, we theoretically analyze the few-photon emissions generated in a coupled double quantum dots (CDQDs)-single mode microcavity system, under continuous wave and pulse excitation. Compared with the uncoupled case, strong sub-Poissonian character is achieved in a CDQDs-cavity system at a certain laser frequency. Based on the proposed scheme, single photon generation can be obtained separately under QD-cavity resonant condition and off-resonant condition. For different cavity decay rates, we reveal that laser frequency detunings of minimum second-order autocorrelation function are discrete and can be divided into three regions. Moreover, the non-ideal situation where two QDs are not identical is discussed, indicating the robustness of the proposed scheme, which possesses sub-Poissonian character in a large QD difference variation range.
Keywords:  sub-Poissonian statistics      quantum dots      microcavity      single photon  
Received:  23 March 2015      Revised:  13 May 2015      Published:  05 November 2015
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  78.67.Hc (Quantum dots)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61372037 and 61401035), the Beijing Excellent Ph.D. Thesis Guidance Foundation, China (Grant No. 20131001301), and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Grant No. IPOC2015ZC05).
Corresponding Authors:  Ye Han     E-mail:

Cite this article: 

Ye Han, Peng Yi-Wei, Yu Zhong-Yuan, Zhang Wen, Liu Yu-Min Sub-Poissonian photon emission in coupled double quantum dots–cavity system 2015 Chin. Phys. B 24 114202

[1] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[2] Boca A, Boozer A D, Buck J R and Kimble H J;2003 Nature 425 268
[3] Garrison J C and Chiao R Y 2008 Quantum Optics (Oxford: Oxford University Press)
[4] Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, Fält S, Hu E L and Imamoğlu A;2007 Nature 445 896
[5] Frey T, Leek P J, Beck M, Blais A, Ihn T, Ensslin K and Wallraff A;2012 Phys. Rev. Lett. 108 046807
[6] Brunner R, Shin Y S, Obata T, Pioro-Ladriére M, Kubo T, Yoshida K, Taniyama T, Tokura Y and Tarucha S;2011 Phys. Rev. Lett. 107 146801
[7] Yamauchi S, Shikanai A, Morohashi I, Furue S, Komori K, Sugaya T and Takagahara T;2007 J. Appl. Phys. 102 094303
[8] Unold T, Mueller K, Lienau C, Elsaesser T and Wieck A D;2011 Phys. Rev. B 84 195315
[9] Benny Y, Presman R, Kodriano Y, Poem E and Gershoni D;2014 Phys. Rev. B 89 035316
[10] Gywat O, Burkard G and Loss D;2002 Phys. Rev. B 65 205329
[11] Laucht A, Villas-Boas J M, Stobbe S, Hauke N, Hofbauer F, Bohm G, Lodahl P, Amann M C and Kaniber M;2010 Phys. Rev. B 82 075305
[12] Peng Y W, Yu Z Y, Liu Y M, Zhang W and Ye H;2014 Opt. Comm. 324 172
[13] Deutsch Z, Neeman L and Oron D;2013 Nat. Nanotech. 8 649
[14] Sitek A and Machnikowski P;2012 Phys. Rev. B 86 205315
[15] Karwat P, Sitek A and Machnikowski P;2011 Phys. Rev. B 84 195315
[16] Carmele A, Knorr A and Richter M;2009 Phys. Rev. B 79 035316
[17] Theuerholz T S, Carmele A, Richter M and Knorr A;2013 Phys. Rev. B 87 245313
[18] Liu Y Y, Petersson K D, Stehlik J, Taylor J M and Petta J R;2014 Phys. Rev. Lett. 113 036801
[19] Xu C and Vavilov M G;2013 Phys. Rev. B 88 195307
[20] Peng Y W, Yu Z Y, Liu Y M, Wu T S and Zhang W;2014 Chin. Phys. B 23 124204
[21] Chen G Y, Lambert N, Chou C H, Chen Y N and Nori F;2011 Phys. Rev. B 84 045310
[22] Zhang Y Q, Tan L and Barker P;2014 Phys. Rev. A 89 043838
[23] Artuso R D and Bryant G W;2013 Phys. Rev. B 87 125423
[24] Lehmberg R H;1970 Phys. Rev. A 2 883
[25] Lindblad G;1976 Commun. Math. Phys. 48 119
[26] Tan S;1999 J. Opt. B 1 424
[27] Majumdar A, Bajcsy M, Rundquist A and Vuckovic J;2012 Phys. Rev. Lett. 108 183601
[28] Majumdar A, Bajcsy M and Vuckovic J;2012 Phys. Rev. A 85 041801
[29] Rundquist A, Bajcsy M, Majumdar A, Sarmiento T, Fischer K, Lagoudakis K G, Buckley S, Piggott A Y and Vuckovi J;2014 Phys. Rev. A 90 023846
[1] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[2] Analysis of dark soliton generation in the microcavity with mode-interaction
Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋). Chin. Phys. B, 2021, 30(2): 024210.
[3] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[4] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[5] Total dose test with γ-ray for silicon single photon avalanche diodes
Qiaoli Liu(刘巧莉), Haiyan Zhang(张海燕), Lingxiang Hao(郝凌翔), Anqi Hu(胡安琪), Guang Wu(吴光), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(8): 088501.
[6] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[7] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[8] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[9] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[10] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[11] Variable optical chirality in atomic assisted microcavity
Hao Zhang(张浩), Wen-Xiu Li (李文秀), Peng Han(韩鹏), Xiao-Yang Chang(常晓阳), Shuo Jiang(蒋硕), An-Ping Huang(黄安平), and Zhi-Song Xiao(肖志松). Chin. Phys. B, 2020, 29(11): 114207.
[12] Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses
Xiaolong Cai(蔡小龙), Dong Zhou(周东), Liang Cheng(程亮), Fangfang Ren(任芳芳), Hong Zhong(钟宏), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(9): 098503.
[13] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
[14] Modulation of magnetic and electrical properties of bilayer graphene quantum dots using rotational stacking faults
Hong-Ping Yang(杨宏平), Wen-Juan Yuan(原文娟), Jun Luo(罗俊), Jing Zhu(朱静). Chin. Phys. B, 2019, 28(7): 078106.
[15] Magnetotransport properties of graphene layers decorated with colloid quantum dots
Ri-Jia Zhu(朱日佳), Yu-Qing Huang(黄雨青), Jia-Yu Li(李佳玉), Ning Kang(康宁), Hong-Qi Xu(徐洪起). Chin. Phys. B, 2019, 28(6): 067201.
No Suggested Reading articles found!