Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 114202    DOI: 10.1088/1674-1056/24/11/114202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Sub-Poissonian photon emission in coupled double quantum dots–cavity system

Ye Han (叶寒), Peng Yi-Wei (彭益炜), Yu Zhong-Yuan (俞重远), Zhang Wen (张文), Liu Yu-Min (刘玉敏)
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  In this work, we theoretically analyze the few-photon emissions generated in a coupled double quantum dots (CDQDs)-single mode microcavity system, under continuous wave and pulse excitation. Compared with the uncoupled case, strong sub-Poissonian character is achieved in a CDQDs-cavity system at a certain laser frequency. Based on the proposed scheme, single photon generation can be obtained separately under QD-cavity resonant condition and off-resonant condition. For different cavity decay rates, we reveal that laser frequency detunings of minimum second-order autocorrelation function are discrete and can be divided into three regions. Moreover, the non-ideal situation where two QDs are not identical is discussed, indicating the robustness of the proposed scheme, which possesses sub-Poissonian character in a large QD difference variation range.
Keywords:  sub-Poissonian statistics      quantum dots      microcavity      single photon  
Received:  23 March 2015      Revised:  13 May 2015      Accepted manuscript online: 
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  78.67.Hc (Quantum dots)  
  42.50.Ar  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61372037 and 61401035), the Beijing Excellent Ph.D. Thesis Guidance Foundation, China (Grant No. 20131001301), and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Grant No. IPOC2015ZC05).
Corresponding Authors:  Ye Han     E-mail:  Han_ye@bupt.edu.cn

Cite this article: 

Ye Han (叶寒), Peng Yi-Wei (彭益炜), Yu Zhong-Yuan (俞重远), Zhang Wen (张文), Liu Yu-Min (刘玉敏) Sub-Poissonian photon emission in coupled double quantum dots–cavity system 2015 Chin. Phys. B 24 114202

[1] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[2] Boca A, Boozer A D, Buck J R and Kimble H J;2003 Nature 425 268
[3] Garrison J C and Chiao R Y 2008 Quantum Optics (Oxford: Oxford University Press)
[4] Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, Fält S, Hu E L and Imamoğlu A;2007 Nature 445 896
[5] Frey T, Leek P J, Beck M, Blais A, Ihn T, Ensslin K and Wallraff A;2012 Phys. Rev. Lett. 108 046807
[6] Brunner R, Shin Y S, Obata T, Pioro-Ladriére M, Kubo T, Yoshida K, Taniyama T, Tokura Y and Tarucha S;2011 Phys. Rev. Lett. 107 146801
[7] Yamauchi S, Shikanai A, Morohashi I, Furue S, Komori K, Sugaya T and Takagahara T;2007 J. Appl. Phys. 102 094303
[8] Unold T, Mueller K, Lienau C, Elsaesser T and Wieck A D;2011 Phys. Rev. B 84 195315
[9] Benny Y, Presman R, Kodriano Y, Poem E and Gershoni D;2014 Phys. Rev. B 89 035316
[10] Gywat O, Burkard G and Loss D;2002 Phys. Rev. B 65 205329
[11] Laucht A, Villas-Boas J M, Stobbe S, Hauke N, Hofbauer F, Bohm G, Lodahl P, Amann M C and Kaniber M;2010 Phys. Rev. B 82 075305
[12] Peng Y W, Yu Z Y, Liu Y M, Zhang W and Ye H;2014 Opt. Comm. 324 172
[13] Deutsch Z, Neeman L and Oron D;2013 Nat. Nanotech. 8 649
[14] Sitek A and Machnikowski P;2012 Phys. Rev. B 86 205315
[15] Karwat P, Sitek A and Machnikowski P;2011 Phys. Rev. B 84 195315
[16] Carmele A, Knorr A and Richter M;2009 Phys. Rev. B 79 035316
[17] Theuerholz T S, Carmele A, Richter M and Knorr A;2013 Phys. Rev. B 87 245313
[18] Liu Y Y, Petersson K D, Stehlik J, Taylor J M and Petta J R;2014 Phys. Rev. Lett. 113 036801
[19] Xu C and Vavilov M G;2013 Phys. Rev. B 88 195307
[20] Peng Y W, Yu Z Y, Liu Y M, Wu T S and Zhang W;2014 Chin. Phys. B 23 124204
[21] Chen G Y, Lambert N, Chou C H, Chen Y N and Nori F;2011 Phys. Rev. B 84 045310
[22] Zhang Y Q, Tan L and Barker P;2014 Phys. Rev. A 89 043838
[23] Artuso R D and Bryant G W;2013 Phys. Rev. B 87 125423
[24] Lehmberg R H;1970 Phys. Rev. A 2 883
[25] Lindblad G;1976 Commun. Math. Phys. 48 119
[26] Tan S;1999 J. Opt. B 1 424
[27] Majumdar A, Bajcsy M, Rundquist A and Vuckovic J;2012 Phys. Rev. Lett. 108 183601
[28] Majumdar A, Bajcsy M and Vuckovic J;2012 Phys. Rev. A 85 041801
[29] Rundquist A, Bajcsy M, Majumdar A, Sarmiento T, Fischer K, Lagoudakis K G, Buckley S, Piggott A Y and Vuckovi J;2014 Phys. Rev. A 90 023846
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[15] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
No Suggested Reading articles found!