Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 104212    DOI: 10.1088/1674-1056/24/10/104212
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device

Hu Fa-Jie, Jin Peng, Wu Yan-Hua, Wang Fei-Fei, Wei Heng, Wang Zhan-Guo
Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

A wide wavelength tuning range swept external-cavity laser using an InAs/GaAs quantum-dot superluminescent diode as a gain device is demonstrated. The tunable filter consists of a polygon scanner and a grating in Littrow telescope-less configuration. The swept laser generates greater than 54-mW peak output power and up to 33-kHz sweep rate with a sweep range of 150 nm centered at 1155 nm. The effects of injection current and sweep rate on the sweep performance of the swept laser are studied.

Keywords:  quantum dot      swept laser      external cavity  
Received:  08 March 2015      Revised:  02 April 2015      Published:  05 October 2015
PACS:  42.60.Fc (Modulation, tuning, and mode locking)  
  78.67.Hc (Quantum dots)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  42.79.Ci (Filters, zone plates, and polarizers)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61274072) and the National High Technology Research and Development Program of China (Grant No. 2013AA014201).

Corresponding Authors:  Jin Peng     E-mail:  pengjin@semi.ac.cn

Cite this article: 

Hu Fa-Jie, Jin Peng, Wu Yan-Hua, Wang Fei-Fei, Wei Heng, Wang Zhan-Guo Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device 2015 Chin. Phys. B 24 104212

[1] Chinn S R, Swanson E A and Fujimoto J G 1997 Opt. Lett. 22 340
[2] Myoung S O, Hee S P and Byoung Y K 2003 IEEE Photon. Technol. Lett. 15 266
[3] Yun S H, Richardson D J and Kim B Y 1998 Opt. Lett. 23 843
[4] Sanders S T, Wang J, Jeffries J B and Hanson R K 2001 Appl. Opt. 40 4404
[5] Yun S H, Boudoux C, Tearney G J and Bouma B E 2003 Opt. Lett. 28 1981
[6] Yun S H, Boudoux C, Pierce M C, de Boer J F, Tearney G J and Bouma B E 2004 IEEE Photon. Technol. Lett. 16 293
[7] Yun S H, Tearney G J, de Boer J F and Bouma B E 2004 Opt. Express 12 5614
[8] Oh W Y, Yun S H, Tearney G J and Bouma B E 2005 IEEE Photon. Technol. Lett. 17 678
[9] Oh W Y, Yun S H, Tearney G J and Bouma B E 2005 Opt. Lett. 30 3159
[10] Lee E C, de Boer J F, Mujat M, Lim H and Yun S H 2006 Opt. Express 14 4403
[11] Lim H, de Boer J F, Park B H, Lee E C, Yelin R and Yun S H 2006 Opt. Express 14 5937
[12] Chong C, Suzuki T, Morosawa A and Sakai T 2008 Opt. Express 16 21105
[13] Motaghian Nezam S M R 2008 Opt. Lett. 33 1741
[14] Leung M K K, Mariampillai A, Standish B A, Lee K K C, Munce N R, Vitkin I A and Yang V X D 2009 Opt. Lett. 34 2814
[15] Lee S W, Song H W, Jung M Y and Kim S H 2011 Opt. Express 19 21227
[16] Mao Y, Chang S, Murdock E and Flueraru C 2011 Opt. Lett. 36 1990
[17] Krstajić N, Childs D T D, Matcher S J, Livshits D, Shkolnik A, Krestnikov I and Hogg R A 2011 IEEE Photon. Technol. Lett. 23 739
[18] Huber R, Wojtkowski M and Fujimoto J G 2006 Opt. Express 14 3225
[19] Nakazaki Y and Yamashita S 2009 Opt. Express 17 8310
[20] Lee H D, Lee J H, Jeong M Y and Kim C S 2011 Opt. Express 19 14586
[21] Takubo Y and Yamashita S 2012 IEEE Photon. Technol. Lett. 24 979
[22] Takubo Y and Yamashita S 2013 Opt. Express 21 5130
[23] Sun Z Z, Ding D, Gong Q, Zhou W, Xu B and Wang Z G 1999 Opt. Quantum Electron. 31 1235
[24] Liu N, Jin P and Wang Z G 2012 Chin. Phys. B 21 117305
[25] Lü X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
[26] Wu J, Lü X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
[27] Liang D C, An Q, Jin P, Li X K, Wei H, Wu J and Wang Z G 2011 Chin. Phys. B 20 108503
[28] Li X K, Liang D C, Jin P, An Q, Wei H, Wu J and Wang Z G 2012 Chin. Phys. B 21 028102
[29] Wei H, Jin P, Luo S, Ji H M, Yang T, Li X K, Wu J, An Q, Wu Y H, Chen H M, Wang F F, Wu J and Wang Z G 2013 Chin. Phys. B 22 094211
[30] Wu J, Jin P, Li X K, Wei H, Wu Y H, Wang F F, Chen H M, Wu J and Wang Z G 2013 Chin. Phys. B 22 104206
[31] Lü X Q, Jin P, Chen H M, Wu Y H, Wang F F and Wang Z G 2013 Chin. Phys. Lett. 30 118102
[32] Grundmann M, Stier O, Bognár S, Ribbat C, Heinrichsdorff F and Bimberg D 2000 Phys. Stat. Sol. A 178 255
[33] Huber R, Wojtkowski M, Taira K, Fujimoto J and Hsu K 2005 Opt. Express 13 3513"
[1] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[2] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[3] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[4] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[5] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[6] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[7] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[8] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
[9] Zero-energy modes in serially coupled double quantum dots
Fu-Li Sun(孙复莉), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华). Chin. Phys. B, 2020, 29(6): 067302.
[10] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[11] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[12] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[13] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[14] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[15] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
No Suggested Reading articles found!