Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 104212    DOI: 10.1088/1674-1056/24/10/104212
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device

Hu Fa-Jie (胡发杰), Jin Peng (金鹏), Wu Yan-Hua (吴艳华), Wang Fei-Fei (王飞飞), Wei Heng (魏恒), Wang Zhan-Guo (王占国)
Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

A wide wavelength tuning range swept external-cavity laser using an InAs/GaAs quantum-dot superluminescent diode as a gain device is demonstrated. The tunable filter consists of a polygon scanner and a grating in Littrow telescope-less configuration. The swept laser generates greater than 54-mW peak output power and up to 33-kHz sweep rate with a sweep range of 150 nm centered at 1155 nm. The effects of injection current and sweep rate on the sweep performance of the swept laser are studied.

Keywords:  quantum dot      swept laser      external cavity  
Received:  08 March 2015      Revised:  02 April 2015      Accepted manuscript online: 
PACS:  42.60.Fc (Modulation, tuning, and mode locking)  
  78.67.Hc (Quantum dots)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  42.79.Ci (Filters, zone plates, and polarizers)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61274072) and the National High Technology Research and Development Program of China (Grant No. 2013AA014201).

Corresponding Authors:  Jin Peng     E-mail:  pengjin@semi.ac.cn

Cite this article: 

Hu Fa-Jie (胡发杰), Jin Peng (金鹏), Wu Yan-Hua (吴艳华), Wang Fei-Fei (王飞飞), Wei Heng (魏恒), Wang Zhan-Guo (王占国) Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device 2015 Chin. Phys. B 24 104212

[1] Chinn S R, Swanson E A and Fujimoto J G 1997 Opt. Lett. 22 340
[2] Myoung S O, Hee S P and Byoung Y K 2003 IEEE Photon. Technol. Lett. 15 266
[3] Yun S H, Richardson D J and Kim B Y 1998 Opt. Lett. 23 843
[4] Sanders S T, Wang J, Jeffries J B and Hanson R K 2001 Appl. Opt. 40 4404
[5] Yun S H, Boudoux C, Tearney G J and Bouma B E 2003 Opt. Lett. 28 1981
[6] Yun S H, Boudoux C, Pierce M C, de Boer J F, Tearney G J and Bouma B E 2004 IEEE Photon. Technol. Lett. 16 293
[7] Yun S H, Tearney G J, de Boer J F and Bouma B E 2004 Opt. Express 12 5614
[8] Oh W Y, Yun S H, Tearney G J and Bouma B E 2005 IEEE Photon. Technol. Lett. 17 678
[9] Oh W Y, Yun S H, Tearney G J and Bouma B E 2005 Opt. Lett. 30 3159
[10] Lee E C, de Boer J F, Mujat M, Lim H and Yun S H 2006 Opt. Express 14 4403
[11] Lim H, de Boer J F, Park B H, Lee E C, Yelin R and Yun S H 2006 Opt. Express 14 5937
[12] Chong C, Suzuki T, Morosawa A and Sakai T 2008 Opt. Express 16 21105
[13] Motaghian Nezam S M R 2008 Opt. Lett. 33 1741
[14] Leung M K K, Mariampillai A, Standish B A, Lee K K C, Munce N R, Vitkin I A and Yang V X D 2009 Opt. Lett. 34 2814
[15] Lee S W, Song H W, Jung M Y and Kim S H 2011 Opt. Express 19 21227
[16] Mao Y, Chang S, Murdock E and Flueraru C 2011 Opt. Lett. 36 1990
[17] Krstajić N, Childs D T D, Matcher S J, Livshits D, Shkolnik A, Krestnikov I and Hogg R A 2011 IEEE Photon. Technol. Lett. 23 739
[18] Huber R, Wojtkowski M and Fujimoto J G 2006 Opt. Express 14 3225
[19] Nakazaki Y and Yamashita S 2009 Opt. Express 17 8310
[20] Lee H D, Lee J H, Jeong M Y and Kim C S 2011 Opt. Express 19 14586
[21] Takubo Y and Yamashita S 2012 IEEE Photon. Technol. Lett. 24 979
[22] Takubo Y and Yamashita S 2013 Opt. Express 21 5130
[23] Sun Z Z, Ding D, Gong Q, Zhou W, Xu B and Wang Z G 1999 Opt. Quantum Electron. 31 1235
[24] Liu N, Jin P and Wang Z G 2012 Chin. Phys. B 21 117305
[25] Lü X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
[26] Wu J, Lü X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
[27] Liang D C, An Q, Jin P, Li X K, Wei H, Wu J and Wang Z G 2011 Chin. Phys. B 20 108503
[28] Li X K, Liang D C, Jin P, An Q, Wei H, Wu J and Wang Z G 2012 Chin. Phys. B 21 028102
[29] Wei H, Jin P, Luo S, Ji H M, Yang T, Li X K, Wu J, An Q, Wu Y H, Chen H M, Wang F F, Wu J and Wang Z G 2013 Chin. Phys. B 22 094211
[30] Wu J, Jin P, Li X K, Wei H, Wu Y H, Wang F F, Chen H M, Wu J and Wang Z G 2013 Chin. Phys. B 22 104206
[31] Lü X Q, Jin P, Chen H M, Wu Y H, Wang F F and Wang Z G 2013 Chin. Phys. Lett. 30 118102
[32] Grundmann M, Stier O, Bognár S, Ribbat C, Heinrichsdorff F and Bimberg D 2000 Phys. Stat. Sol. A 178 255
[33] Huber R, Wojtkowski M, Taira K, Fujimoto J and Hsu K 2005 Opt. Express 13 3513"
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!