Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 104203    DOI: 10.1088/1674-1056/24/10/104203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ghost imaging with broad distance

Duan De-Yanga, Zhang Lub, Du Shao-Jiangc, Xia Yun-Jiea
a Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Research Institute of Laser, Qufu Normal University, Qufu 273165, China;
b School of Physical Engineering, Qufu Normal University, Qufu 273165, China;
c School of Physics and Information Technology, Jining University, Qufu 273155, China
Abstract  We present a scheme that is able to achieve the ghost imaging with broad distance. The physical nature of our scheme is that the different wavelength beams are separated in free space by an optical media according to the slow light or dispersion principle. Meanwhile, the equality of the optical distance of the two light arms is not violated. The photon correlation is achieved by the rotating ground glass plate (RGGP) and spatial light modulator (SLM), respectively. Our work shows that a monochromic ghost image can be obtained in the case of RGGP. More importantly, the position (or distance) of the object can be ascertained by the color of the image. Thus, the imaging and ranging processes are combined as one process for the first time to the best of our knowledge. In the case of SLM, we can obtain a colored image regardless of where the object is.
Keywords:  multiwavelength ghost imaging      slow light      dispersion      imaging distance  
Received:  13 March 2015      Revised:  05 May 2015      Published:  05 October 2015
PACS:  42.30.Va (Image forming and processing)  
  42.50.Ar  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012, 11204156, 11304179, and 11247240), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20133705110001 and 20123705120002), the Scientific Research Foundation for Outstanding Young Scientists of Shandong Province, China (Grant No. BS2013DX034), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ024).
Corresponding Authors:  Xia Yun-Jie     E-mail:  yjxia@mail.qfnu.edu.cn

Cite this article: 

Duan De-Yang, Zhang Lu, Du Shao-Jiang, Xia Yun-Jie Ghost imaging with broad distance 2015 Chin. Phys. B 24 104203

[1] Cheng J and Lin J 2013 Phys. Rev. A 87 043810
[2] Cheng J 2009 Opt. Express 17 7916
[3] Meyers R E, Deacon K S and Shih Y 2010 Appl. Phys. Lett. 98 111115
[4] Duan D Y, Zhang L and Xia Y J 2014 J. Opt. Soc. Am. A 31 730
[5] Gong W L and Han S S 2011 Opt. Lett. 36 394
[6] Bai Y F, Yang W X and Yu X Q 2012 Chin. Phys. B 21 044206
[7] Duan D Y, Du S J and Xia Y J 2013 Phys. Rev. A 88 053842
[8] Cheng J, Han S S and Yan Y J 2006 Chin. Phys. 15 2002
[9] Zhang C, Gong W L and Han S S 2013 Appl. Phys. Lett. 102 021111
[10] Luo C L and Cheng J 2013 Opt. Lett. 38 5381
[11] Duan D Y, Zhang L, Du S J and Xia Y J 2015 Chin. Phys. 24 024202
[12] Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131110
[13] Li M F, Zhang Y R, Luo K H, Wu L A and Fan H 2013 Phys. Rev. A 87 033813
[14] Zhao S M and Zhuang P 2014 Chin. Phys. B 23 054203
[15] Gong W L and Han S S 2012 J. Opt. Soc. Am. A 29 1571
[16] Li M F, Zhang Y R, Liu X F, Yao X R, Luo K H, Fan H and Wu L A 2013 Appl. Phys. Lett. 103 211119
[17] Zhao C Q, Gong W L, Chen M L, Li E R, Wang H, Xu W D and Han S S 2012 Appl. Phys. Lett. 101 141123
[18] Gong W L and Han S S 2011 Phys. Lett. A 375 990
[19] Li E R, Bo Z W, Chen M L, Gong W L and Han S S 2014 Appl. Phys. Lett. 104 251120
[20] Simmons Z J, Proite N A, Miles J, Sikes D E and Yavuz D D 2012 Phys. Rev. A 85 053810
[21] Residori S, Bortolozzo U and Huignard J P 2008 Phys. Rev. Lett. 100 203603
[22] Lavoie B R, Leung P M and Sanders B C 2013 Phys. Rev. A 88 023860
[23] Erkmen B I and Shapiro J H 2008 Phys. Rev. A 77 043809
[24] Erkmen B I and Shapiro J H 2009 Phys. Rev. A 79 023833
[25] Chan K W C, O'Sullivan M N and Boyd R W 2009 Phys. Rev. A 79 033808
[26] Duan D Y, Du S J, Yan L, Jiang S S, Liu Y Y, Zhang L and Xia Y J 2014 Eur. Phys. J. D 68 11
[27] Shapiro J H, Venkatraman D and Wong N F C 2013 Sci. Rep. 3 1849
[28] Wang C F, Zhang D W, Bai Y F and Chen C 2010 Phys. Rev. A 82 063814
[1] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[2] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[3] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[4] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[5] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[6] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
[7] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[8] Compound-induced transparency in three-cavity coupled structure
Hao-Ye Qin(秦昊烨), Yi-Heng Yin(尹贻恒), and Ming Ding(丁铭). Chin. Phys. B, 2020, 29(12): 124208.
[9] Study on dispersion characteristics of terahertz waves in helical waveguides
Jin-Hai Sun(孙金海), Shao-Hua Zhang(张少华), Xu-Tao Zhang(张旭涛), He Cai(蔡禾), Yong-Qiang Liu(刘永强), and Zeng-Ming Chao(巢增明)$. Chin. Phys. B, 2020, 29(11): 114301.
[10] Zitterbewegung of Dirac quasiparticles emerged in a Su-Schrieffer–Heeger lattice
Yue Hu(胡玥), Zheng-Xin Guo(郭政鑫), Ze-Ming Zhong(钟泽明), and Zhi Li(李志). Chin. Phys. B, 2020, 29(11): 110302.
[11] Variable optical chirality in atomic assisted microcavity
Hao Zhang(张浩), Wen-Xiu Li (李文秀), Peng Han(韩鹏), Xiao-Yang Chang(常晓阳), Shuo Jiang(蒋硕), An-Ping Huang(黄安平), and Zhi-Song Xiao(肖志松). Chin. Phys. B, 2020, 29(11): 114207.
[12] Exciton dynamics in different aromatic hydrocarbon systems
Milica Rutonjski†, Petar Mali, Slobodan Rado\v sevi\'c, Sonja Gombar, Milan Panti\'c, and Milica Pavkov-Hrvojevi\'c. Chin. Phys. B, 2020, 29(10): 107103.
[13] Loss induced negative refraction and super-prism effect at highly absorptive interface
Jian Wu(吴坚), Tao Wang(王涛), Tianyue Hou(侯天悦), Xuefen Kan(阚雪芬), Cheng Yin(殷澄), Pu Zhou(周朴), Zhuangqi Cao(曹庄琪). Chin. Phys. B, 2019, 28(5): 054201.
[14] Amplitude and phase controlled absorption and dispersion of coherently driven five-level atom in double-band photonic crystal
Li Jiang(姜丽), Ren-Gang Wan(万仁刚). Chin. Phys. B, 2019, 28(2): 024206.
[15] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
No Suggested Reading articles found!