Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 104202    DOI: 10.1088/1674-1056/24/10/104202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Superscattering-enhanced narrow band forward scattering antenna

Hu De-Jiao (胡德骄)a b c, Zhang Zhi-You (张志友)a b c, Du Jing-Lei (杜惊雷)a b c
a College of Physical Science and Technology, Sichuan University, Chengdu 610064, China;
b High Energy Density Physics of the Ministry of Education Key Laboratory, Sichuan University, Chengdu 610064, China;
c Sino-British Joint Materials Research Institute, Sichuan University, Chengdu 610064, China
Abstract  We present a narrow band forward scattering optical antenna which is based on the excitation of distinctive whispering gallery modes (WGMs). The antenna is composed of three coaxial cylinder layers: a dielectric layer is sandwiched between a metallic core and cladding. Owing to the destructive interference between the scattering of the outer metallic cladding and the WGM in the backward direction, the power flow in the forward direction is increased. Simulation and analysis show that in proper geometry conditions, the cavity can be tuned into a superscattering state. At this state, both the zeroth and the first order of WGM are excited and contribute to the total scattering. It is shown that the power ratio (power towards backward divided by power towards forward ) can be enhanced to about 27 times larger than that for a non-resonant position by the superscattering. Owing to the confinement of the cladding to WGMs, the wavelength range of effective forward scattering is considerably narrow (about 15 nm).
Keywords:  surface plasmons      optical antenna      directional scattering      Fano resonance  
Received:  16 December 2014      Revised:  20 April 2015      Accepted manuscript online: 
PACS:  42.25.Fx (Diffraction and scattering)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61377054), the Collaborative Innovation Foundation of Sichuan University, China (Grant No. XTCX 2013002), and the International Cooperation and Exchange of Science and Technology Project in Sichuan Province, China (Grant No. 2013HH0010).
Corresponding Authors:  Du Jing-Lei     E-mail:  dujl@scu.edu.cn

Cite this article: 

Hu De-Jiao (胡德骄), Zhang Zhi-You (张志友), Du Jing-Lei (杜惊雷) Superscattering-enhanced narrow band forward scattering antenna 2015 Chin. Phys. B 24 104202

[1] Kerker M, Wang D and Giles C 1983 J. Opt. Soc. Am. 73 765
[2] Liu W, Miroshnichenko A E, Neshev D N and Kivshar Y S 2012 ACS Nano 6 5489
[3] Liu W, Miroshnichenko A E, Neshev D N and Kivshar Y S 2012 Phys. Rev. B 86 081407
[4] Liu W, Miroshnichenko A E, Oulton R F, Neshev D N, Hess O and Kivshar Y S 2013 Opt. Lett. 38 2621
[5] Liu W, Zhang J, Lei B, Ma H, Xie W and Hu H 2014 Opt. Express 22 16178
[6] Liu W, Andrey E M and Yuri S K 2014 Chin. Phys. B 23 047806
[7] Fu Y H, Kuznetsov A I, Miroshnichenko A E, Yu Y F and Luk'yanchuk B 2013 Nat. Commun. 4 1527
[8] Geffrin J M, García-Cámara B, Gómez-Medina R, Albella P, Froufe-Pérez L, Eyraud C, Litman A, Vaillon R, González F and Nieto-Vesperinas M 2012 Nat. Commun. 3 1171
[9] Poutrina E, Rose A, Brown D, Urbas A and Smith D 2013 Opt. Express 21 31138
[10] Rybin M V, Kapitanova P V, Filonov D S, Slobozhanyuk A P, Belov P A, Kivshar Y S and Limonov M F 2013 Phys. Rev. B 88 205106
[11] Tribelsky M I, Flach S, Miroshnichenko A E, Gorbach A V and Kivshar Y S 2008 Phys. Rev. Lett. 100 043903
[12] Taminiau T H, Stefani F D and Van Hulst N F 2008 Opt. Express 16 10858
[13] Pakizeh T and Käll M 2009 Nano Lett. 9 2343
[14] Lavasani S A and Pakizeh T 2012 J. Opt. Soc. Am. B 29 1361
[15] Kosako T, Kadoya Y and Hofmann H F 2010 Nat. Photon. 4 312
[16] Vercruysse D, Sonnefraud Y, Verellen N, Fuchs F B, Martino G D, Lagae L, Moshchalkov V V, Maier S A and Van Dorpe P 2013 Nano Lett. 13 3843
[17] Ding W, Chen Y H and Li Z Y 2014 Chin. Phys. B 23 037301
[18] Engheta N 2007 Science 317 1698
[19] Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R and Van Hulst N F Science 329 930
[20] Catrysse P B and Fan S H 2009 Appl. Phys. Lett. 94 231111
[21] Ruan Z S and Fan S H 2009 J. Phys. Chem. C 114 7324
[22] Ruan Z S and Fan S H 2010 Phys. Rev. Lett. 105 013901
[23] Hu J H, Hang Y Q, Ren X M, Duan X F, Li Y H, Wang Q, Zhang X and Wang J 2014 Chin. Phys. Lett. 31 064205
[24] Chen Z Q, Qi J W, Chen J, Li Y D, Hao Z Q, Lu W Q, Xu J J and Sun Q 2013 Chin. Phys. Lett. 30 057301
[25] Li J B, He M D, Wang X J, Peng X F and Chen L Q 2014 Chin. Phys. B 23 067302
[26] Zhang J, Zhang S, Ou B Q, Wu W and Chen P X 2014 Chin. Phys. B 23 113701
[27] Xu Z X, Qu W Z, Gao R, Hu X H and Xiao Y H 2013 Chin. Phys. B 22 033202
[28] Ding C F, Zhang Y T, Yao J Q, Sun C L, Xu D G and Zhang G Z 2014 Chin. Phys. B 23 124203
[29] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[1] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[2] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[3] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[4] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[5] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[6] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[7] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[8] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[9] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[10] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[11] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[12] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[13] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[14] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[15] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
No Suggested Reading articles found!