Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 096104    DOI: 10.1088/1674-1056/23/9/096104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural stability and electronic properties of carbon star lattice monolayer

Fan Xue-Lan (范雪兰)a, Niu Chun-Yao (牛春要)a, Wang Xin-Quan (王新全)a, Wang Jian-Tao (王建涛)a, Li Han-Dong (李捍东)b
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Abstract  By means of the first-principles calculations, we have investigated the structural stability and electronic properties of carbon star lattice monolayer and nanoribbons. The phase stability of the carbon star lattice is verified through phonon-mode analysis and room temperature molecular dynamics simulations. The carbon star lattice is found to be metallic due to the large states across the Fermi-level contributed by pz orbital. Furthermore, the nanoribbons are also found to be metallic and no spin polarization occurs, except for the narrowest nanoribbon with one C12 ring, which has a ferromagnetic ground state. Our results show that carbon star lattice monolayer and nanoribbons have rich electronic properties with great potential in future electronic nanodevices.
Keywords:  carbon star lattice      structural stability      electronic properties      first-principles calculations  
Received:  03 March 2014      Revised:  16 April 2014      Accepted manuscript online: 
PACS:  61.48.-c (Structure of fullerenes and related hollow and planar molecular structures)  
  61.46.-w (Structure of nanoscale materials)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  63.20.Dj  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274356) and the Ministry of Environmental Protection of China (Grant Nos. 200909086 and 201109037).
Corresponding Authors:  Wang Jian-Tao     E-mail:  wjt@aphy.iphy.ac.cn

Cite this article: 

Fan Xue-Lan (范雪兰), Niu Chun-Yao (牛春要), Wang Xin-Quan (王新全), Wang Jian-Tao (王建涛), Li Han-Dong (李捍东) Structural stability and electronic properties of carbon star lattice monolayer 2014 Chin. Phys. B 23 096104

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Geim A K 2009 Science 324 1530
[4] Setare M R and Jahani D 2011 Chin. Phys. Lett. 28 097302
[5] Baughman R H, Eckhardt H and Kertesz M 1987 J. Chem. Phys. 87 6687
[6] Narita N, Nagai S, Suzuki S and Nakao K 1998 Phys. Rev. B 58 11009
[7] Malko D, Neiss C, Viñes F and Görling A 2012 Phys. Rev. Lett. 108 086804
[8] Lin X, Wang H L, Pan H and Xu H Z 2013 Chin. Phys. Lett. 30 077305
[9] Haley M M, Bell M L, English J J, Johnson C A and Weakley T J R 1997 J. Am. Chem. Soc. 119 2956
[10] Li G X, Li Y L, Liu H B, Guo Y B, Li Y J and Zhu D B 2010 Chem. Commun. 46 3256
[11] Terrones H, Terrones M, Hernández E, Grobert N, Charlier J C and Ajayan P M 2000 Phys. Rev. Lett.84 1716
[12] Lusk M T and Carr L 2009 Carbon 47 2226
[13] Appelhans D J, Lin Z B and Lusk M T 2010 Phys. Rev. B 82 073410
[14] Crespi V H, Benedict L X, Cohen M L and Louie S G 1996 Phys. Rev. B 53 13303
[15] Wang X Q, Li H D and Wang J T 2012 Phys. Chem. Chem. Phys. 14 11107
[16] Tyutyulkov N, Dietz F, Müllen K and Baumgarten M 1997 Chem.Phys.Lett.272 111
[17] Wang X Q,Li H D and Wang J T 2013 Phys. Chem. Chem. Phys. 15 2024
[18] Zhang D, Lin L Z and Zhu J J 2014 Chin. Phys. Lett. 31 028102
[19] Konstantinova E, Dantas S O and Barone P M V B 2006 Phys. Rev. B 74 035417
[20] Enyashin A N and Ivanovskii A L 2011 Phys. Status Solidi B 248 1879
[21] Richter J, Schulenberg J and Honecher A 2004 Phys. Rev. B 70 174454
[22] Scullard C R 2006 Phys. Rev. E 73 016107
[23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[25] Kresse G and Hafner J 1996 Comput. Mater. Sci. 6 15
[26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[27] Blöchl P E 1994 Phys. Rev. B 50 17953
[28] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[29] Togo A 2004 Solid State Commun. 131 141
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[7] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[8] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[9] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[10] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[11] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[14] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[15] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
No Suggested Reading articles found!