CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Anisotropy of elasticity and minimum thermal conductivity of monocrystal M4AlC3 (M=Ti, Zr, Hf) |
Ding Ai-Ling (丁艾玲), Li Chun-Mei (李春梅), Wang Jin (王瑨), Ao Jing (敖靖), Li Feng (李凤), Chen Zhi-Qian (陈志谦) |
Faculty of Materials and Energy, Southwest University, Chongqing 400715, China |
|
|
Abstract The elastic constants, elastic anisotropy index, and anisotropic fractional ratios of Ti4AlC3, Zr4AlC3, and Hf4AlC3 are studied by using a plane wave method based on density functional theory. All compounds are characterized by the elastic anisotropy index. The bond length, population, and hardness of the three compounds are calculated. The degrees of hardness are then compared. The minimum thermal conductivity at high temperature limitation in the propagation direction of [0001] (0001) is calculated by the acoustic wave velocity, which indicates that the thermal conductivity is also anisotropic. Finally, the electronic structures of the compounds are analyzed numerically. We show that the bonding of the M4AlC3 lattice exhibits mixed properties of covalent bonding, ionic bonding, and metallic bonding. Moreover, no energy gap is observed at the Fermi level, indicating that various compounds exhibit metallic conductivity at the ground state.
|
Received: 14 November 2013
Revised: 24 February 2014
Accepted manuscript online:
|
PACS:
|
62.20.D-
|
(Elasticity)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
74.25.Bt
|
(Thermodynamic properties)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51171156), CSTC2012GGYS5001, and CSTC2013JCYJYS5002. |
Corresponding Authors:
Chen Zhi-Qian
E-mail: chen_zq@swu.edu.cn
|
Cite this article:
Ding Ai-Ling (丁艾玲), Li Chun-Mei (李春梅), Wang Jin (王瑨), Ao Jing (敖靖), Li Feng (李凤), Chen Zhi-Qian (陈志谦) Anisotropy of elasticity and minimum thermal conductivity of monocrystal M4AlC3 (M=Ti, Zr, Hf) 2014 Chin. Phys. B 23 096201
|
[1] |
Barsoum M W 2000 Prog. Solid State Chem. 28 201
|
[2] |
Nowotny H 1970 Solid State Chem. 2 27
|
[3] |
Emmerlich J, Högberg H, Sasvári S, Per O Å and Hultman L 2004 J. Appl. Phys. 96 4817
|
[4] |
Wolfsgruber H, Nowotny H and Benesovsky F 1967 Monatsh. Chem. 98 2401
|
[5] |
Wilhelmssona O and Palmquist J P 2004 Appl. Phys. Lett. 85 1066
|
[6] |
Etzkorn J, Ade M and Hillebrecht H 2007 Inorg. Chem. 46 1410
|
[7] |
Högberg H, Emmerlich J, Eklund P, Wilhelmsson O, Palmquist J P, Jansson U and Hultman L 2006 Adv. Sci. Technol. 45 2648
|
[8] |
Procopio A T, Barsoum M W and El-Raghy T 2000 Metal. Mater. Trans. A 31A 333
|
[9] |
Magnuson M, Mattesini M, Wilhelmsson O, Emmerlich J, Palmquist J P, Li S, Ahuja R, Hultman L, Eriksson O and Jansson U 2006 Phys. Rev. A 74 205102
|
[10] |
Bai Y L, He X D, Li Y B, Zhu C C and Li M W 2009 Solid State Commun. 149 215
|
[11] |
Wang J Y, Wang J M, Zhou Y C, Lina Z J and Hu C H 2008 Scr. Mater. 58 1043
|
[12] |
Islam M S and Islam A K M A 2011 Physica B 406 275
|
[13] |
Barsoum M W and Radovic M 2011 Annu. Rev. Mater. Res. 41 195
|
[14] |
Hossain M M, Ali M S and Islam A K M A 2011 Mater. Sci. 1108 0553
|
[15] |
Rawn C J, Barsoum M W, El-Raghy T, Procipio A, Hoffmann C M and Hubbard C R 2000 Mater. Res. B 35 1785
|
[16] |
Etzkorn J, Ade M and Hillebrecht H 2007 Inorg. Chem. 46 7646
|
[17] |
Hu C F, Li F Z, Zhang J, Wang J M, Wang J Y and Zhou Y C 2007 Scr. Mater. 57 893
|
[18] |
Palmquist J P, El-Raghy T, Howing J, Wilhemsson O and Sundberg M 2006 Conference of Advanced Ceram & Composites (Abstract No. ICACC-S1-184)
|
[19] |
Lin Z J, Zhuo M J, Zhou Y C, Li M S and Wang J Y 2006 J. Mater. Res. 21 2587
|
[20] |
Palmquist J P, Li S, Persson P O A, Emmerlich J, Wilhelmsson O, Högberg H, Katsnelson M I, Johansson B, Ahuja R, Eriksson O, Hultman L and Jansson U 2004 Phys. Rev. B 70 165401
|
[21] |
Högberg H, Hultman L, Emmerlich J, Joelsson T, Eklund P, Molina-Aldareguia J M, Palmquist J P, Wilhelmsson O and Jansson U 2005 Surf. Coat Technol. 193 6
|
[22] |
Högberg H, Eklund P, Emmerlich J, Birch J and Hultman L 2005 J. Mater. Res. 20 779
|
[23] |
Hu C F, Li F Z, He L F, Liu M Y, Zhang J, Wang J M, Bao Y W, Wang J Y and Zhou Y C 2008 J. Am. Ceram. Soc. 91 2258
|
[24] |
Hohenberg P and Kohn W 1964 Phys. 136 864
|
[25] |
Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
|
[26] |
Vanderbilt D 1990 Phys. Rev. B 41 7892
|
[27] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[28] |
Broyden C G and Inst J 1970 Math. Appl. 6 222
|
[29] |
Fletcher R 1970 Compute. J. 13 317
|
[30] |
Goldfarb D 1970 Math. Comput. 24 23
|
[31] |
Shanno D F 1970 Math. Comput. 24 647
|
[32] |
Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig: B. G. Teubner) p. 574
|
[33] |
Reuss A and Angew Z 1929 Math. Mech. 9 49
|
[34] |
Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
|
[35] |
Hill R 1952 Proc. Phys. Soc. A 65 350
|
[36] |
Güler M and Güler E 2013 Chin. Phys. Lett. 30 056201
|
[37] |
Pugh S F 1954 Philos. Mag. 45 823
|
[38] |
Ranganathan S I and Starzewski M O 2008 Phys. Rev. Lett. 101 055504
|
[39] |
Chung D H and Buessem W R 1967 J. Appl. Phys. 38 2010
|
[40] |
Feng J, Xiao B, Zhou R, Pan W and Clarke D R 2012 Acta Mater. 60 3380
|
[41] |
Herman R F S 1961 An Introduction to Applied Anisotropic Elasticity (Oxford: Oxford University Press)
|
[42] |
Nye J F 1964 Physical Properties of Crystals (Oxford: Clarendon Press)
|
[43] |
Gao F M and Gao L H 2010 J. Superhard Mater. 32 148
|
[44] |
Gou H Y, Hou L, Zhang J W and Gao F M 2008 Appl. Phys. Lett. 92 241901
|
[45] |
Feng J, Xiao B, Wan C L, Qu Z X, Huang Z C, Chen J C, Zhou R and Pan W 2011 Acta Mater. 59 1742
|
[46] |
Grimvall G 1999 Thermophysical Properties of Materials (1st edn.) (Oxford: The Netherlands)
|
[47] |
Clark D R 2003 Surf. Coat. Technol. 163 67
|
[48] |
Cahill D G, Watson S K and Pohl R O 1992 Phys. Rev. B 46 6131
|
[49] |
Kittel C 1997 Introduction to Solid State Physics (Now York: John Wiley & Sons)
|
[50] |
Wong J, Krisch M, Farber D L, Occelli F, Xu R, Chiang T C, Clatterbuck D, Schwartz A J, Wall M and Boro C 2005 Phys. Rev. B 72 064115
|
[51] |
Du Y L 2009 Chin. Phys. Lett. 26 117102
|
[52] |
Wang J, Li C M, Ao J, Li F and Chen Z Q 2013 Acta Phys. Sin. 62 087102 (in Chinese)
|
[53] |
Quan H J and Gong X G 2000 Chin. Phys. Soc. 9 0656
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|