Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 067302    DOI: 10.1088/1674-1056/23/6/067302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Switching and Fano resonance via exciton-plasmon interaction

Li Jian-Bo, He Meng-Dong, Wang Xin-Jun, Peng Xiao-Fang, Chen Li-Qun
Institute of Mathematics and Physics, Central South University of Forestry and Technology, Changsha 410004, China
Abstract  We further study theoretically the properties of switching and Fano resonance in a hybrid nanosystem consisting of two quantum dots (QDs) and a metal nanowire via exciton-plasmon interaction. The transmission of the single plasmon can be switched on or off in a wide-frequency region by adjusting the transition frequencies of the QDs and the phase of the propagating plasmon. Specifically, the dynamical mechanism of Fano-type transmission is further revealed and analyzed in detail.
Keywords:  surface plasmon      quantum dots      quantum computation      optical waveguides and couplers     
Received:  26 July 2013      Published:  15 June 2014
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Hc (Quantum dots)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.79.Gn (Optical waveguides and couplers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174372).
Corresponding Authors:  Li Jian-Bo     E-mail:  jbli_opt@126.com

Cite this article: 

Li Jian-Bo, He Meng-Dong, Wang Xin-Jun, Peng Xiao-Fang, Chen Li-Qun Switching and Fano resonance via exciton-plasmon interaction 2014 Chin. Phys. B 23 067302

[1] Bergman D J and Stockman M I 2003 Phys. Rev. Lett. 90 027402
[2] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
[3] Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402
[4] Fedutik Y, Temnov V V, Schops O, Woggon U and Artemyev M V 2007 Phys. Rev. Lett. 99 136802
[5] Sadeghi S M, West R G and Nejat A 2011 Nanotechnology 22 405202
[6] Gu Y, Huang L, Martin O J F and Gong Q H 2010 Phys. Rev. B 81 193103
[7] Govorov A O, Lee J and Kotov N A 2007 Phys. Rev. B 76 125308
[8] Zhou Z K, Li M, Yang Z J, Peng X N, Su X R, Zhang Z S, Li J B, Kim N C, Yu X F, Zhou L, Hao Z H and Wang Q Q 2010 ACS Nano 4 5003
[9] Govorov A O, Bryant G W, Zhang W, Skeini T, Lee J, Kotov N A, Slocik J M and Naik R R 2006 Nano Lett. 6 984
[10] Malyshev A V and Malyshev V A 2011 Phys. Rev. B 84 035314
[11] Li J B, Kim N C, Cheng M T, Zhou L, Hao Z H and Wang Q Q 2012 Opt. Express 20 1856
[12] Sadeghi S M, Deng L, Li X and Huang W P 2009 Nanotechnology 20 365401
[13] Xiao Z H, Zheng L and Lin H Z 2012 Opt. Express 20 1219
[14] Liu S D, Cheng M T, Yang Z J and Wang Q Q 2008 Opt. Lett. 33 851
[15] Sadeghi S M 2010 Nanotechnology 21 355501
[16] Kim N C, Li J B, Yang Z J, Hao Z H and Wang Q Q 2010 Appl. Phys. Lett. 97 061110
[17] Chang D E, Sorensen A S, Demler E A and Lukin M D 2007 Nat. Phys. 3 807
[18] Hatef A, Sadeghi S M, Boulais É and Meunier M 2013 Nanotechnology 24 015502
[19] Pacifici D, Lezec H J and Atwater H A 2007 Nat. Photon. 1 402
[20] Cheng M T, Luo Y Q, Wang P Z and Zhao G X 2010 Appl. Phys. Lett. 97 191903
[21] Cheng M T 2011 Acta Phys. Sin. 60 117301 (in Chinese)
[22] Cheng M T 2012 Opt. Commun. 285 804
[23] Chen G Y, Lambert N, Chou C H, Chen Y N and Nori F 2011 Phys. Rev. B 84 045310
[24] Chen W, Chen G Y and Chen Y N 2010 Opt. Express 18 10360
[25] Chen W, Chen G Y and Chen Y N 2011 Opt. Lett. 36 3602
[26] Chen G Y and Chen Y N 2012 Opt. Lett. 37 4023
[27] Cheng M T and Song Y Y 2012 Opt. Lett. 37 978
[28] Shen J T and Fan S 2005 Opt. Lett. 30 2001
[29] Chang D E, Sorensen A S, Hemmer P R and Lukin M D 2006 Phys. Rev. Lett. 97 053002
[30] Chang D E, Sorensen A S, Hemmer P R and Lukin M D 2007 Phys. Rev. B 76 035420
[31] Li J B, Cheng M T, Yang Z J and Hao Z H 2009 Chin. Phys. Lett. 26 113202
[32] Tsoi T S and Law C K 2008 Phys. Rev. A 78 063832
[33] Gu L M 2012 Chin. Phys. Lett. 29 104206
[34] Xiao X F, Li M, Liu Y C, Li Y, Sun X and Gong Q 2010 Phys. Rev. A 82 065804
[1] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[2] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[3] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[4] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[5] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[6] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[7] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[8] Selective excitation of multipolar surface plasmon in a graphene-coated dielectric particle by Laguerre Gaussian beam
Yang Yang(杨阳), Guanghua Zhang(张光华), Xiaoyu Dai(戴小玉). Chin. Phys. B, 2020, 29(5): 057302.
[9] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[10] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[11] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[12] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
[13] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[14] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[15] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
No Suggested Reading articles found!