Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047302    DOI: 10.1088/1674-1056/23/4/047302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Simply synthesized TiO2 nanorods as an effective scattering layer for quantum dot sensitized solar cells

Mahmoud Samadpoura, Azam Iraji zadb c, Mehdi Molaeid
a Department of Physics, Faculty of Science, K. N. Toosi University of Technology, P. O. Box 15418-49611, Tehran, Iran;
b Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P. O. Box 11155-8639, Tehran, Iran;
c Department of Physics, Sharif University of Technology, P. O. Box 11155-9161, Tehran, Iran;
d Department of Physics, Faculty of Science,Vali-e-Asr University, Rafsanjan, Iran
Abstract  TiO2 nanorod layers are synthesized by simple chemical oxidation of Ti substrates. Diffuse reflectance spectroscopy measurements show effective light scattering properties originating from nanorods with length scales on the order of one micron. The films are sensitized with CdSe quantum dots (QDs) by successive ionic layer adsorption and reaction (SILAR) and integrated as a photoanode in quantum dot sensitized solar cells (QDSCs). Incorporating nanorods in photoanode structures provided 4-to 8-fold enhancement in light scattering, which leads to a high power conversion efficiency, 3.03% (Voc=497 mV, Jsc=11.32 mA/cm2, FF=0.54), in optimized structures. High efficiency can be obtained just by tuning the photoanode structure without further treatments, which will make this system a promising nanostructure for efficient quantum dot sensitized solar cells.
Keywords:  solar cell      nanorod      quantum dot      scattering  
Received:  29 July 2013      Revised:  02 September 2013      Accepted manuscript online: 
PACS:  73.50.Pz (Photoconduction and photovoltaic effects)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  82.47.Jk (Photoelectrochemical cells, photoelectrochromic and other hybrid electrochemical energy storage devices)  
Corresponding Authors:  Mahmoud Samadpour, Azam Iraji zad     E-mail:  samadpour@kntu.ac.ir;iraji@sharif.edu
About author:  73.50.Pz; 73.50.Gr; 81.07.-b; 82.47.Jk

Cite this article: 

Mahmoud Samadpour, Azam Iraji zad, Mehdi Molaei Simply synthesized TiO2 nanorods as an effective scattering layer for quantum dot sensitized solar cells 2014 Chin. Phys. B 23 047302

[1] Bisquert J, Cahen D, Hodes G, Rühle S and Zaban A 2004 J. Phys. Chem. B 108 8106
[2] Tao X B, Xue Z B, Jing B, Qing Z, Biao L Y, Min C W and Jun C 2008 Chin. Phys. B 17 3713
[3] Jian L P, Kai C, Fu C Y, Gao W Z, Xin H, Bo L J, Rui H J and Li Z W 2012 Chin. Phys. B 21 118101
[4] Hodes G 2008 J. Phys. Chem. C 112 17778
[5] Kamat P V 2008 J. Phys. Chem. C 112 18737
[6] Kamat P V, Tvrdy K, Baker D R and Radich J G 2010 Chem. Rev. 110 6664
[7] Mora-Seró I and Bisquert J 2010 J. Phys. Chem. Lett. 1 3046
[8] Mora-Seró I, Giménez S, Fabregat-Santiago F, Gómez R, Shen Q, Toyoda T and Bisquert J 2009 Accounts of Chemical Research 42 1848
[9] O'Regan B and Grätzel M 1991 Nature 353 737
[10] Rühle S, Shalom M and Zaban A 2010 Chem. Phys. Chem. 11 2290
[11] Alivisatos A P 1996 Science 271 933
[12] Yu W W, Qu L, Guo W and Peng X 2003 Chem. Mater. 15 2854
[13] Ellingson R J, Beard M C, Johnson J C, Yu P, Micic O I, Nozik A J, Shabaev A and Efros A L 2005 Nano Lett. 5 865
[14] Sambur J B, Novet T and Parkinson B A 2010 Science 330 63
[15] Schaller R D and Klimov V I 2004 Phys. Rev. Lett. 92 186601
[16] Samadpour M, Boix P P, Giménez S, Iraji Zad A, Taghavinia N, Mora-Seró I and Bisquert J 2011 J. Phys. Chem. C 115 14400
[17] Y L Lee and Y S Lo 2009 Adv. Func. Mater. 19 604
[18] Mora-Seró I, Giménez S, Fabregat-Santiago F, Gómez R, Shen Q, Toyoda T and Bisquert J 2009 Acc. Chem. Res. 42 1848
[19] Shen Q, Kobayashi J, Diguna L J and Toyoda T 2008 J. Appl. Phys. 103 084304
[20] Kongkanand A, Tvrdy K, Takechi K, Kuno M and Kamat P V 2008 J. Am. Chem. Soc. 130 4007
[21] Santra P K and Kamat P V 2012 J. Am. Chem. Soc. 134 2508
[22] Robel I, Subramanian V, Kuno M and Kamat P V 2006 J. Am. Chem. Soc. 128 2385
[23] Lee H J, Chen P, Moon S J, Sauvage F, Sivula K, Bessho T, Gamelin D R, Comte P, Zakeeruddin S M, Seok S I, Grätzel M and Nazeeruddin M K 2009 Langmuir 25 7602
[24] Lee Y L and Chang C H 2008 J. Power Sources 185 584
[25] Li L, Yang X, Gao J, Tian H, Zhao J, Hagfeldt A and Sun L 2011 J. Am. Chem. Soc. 133 8458
[26] Yu Z, Zhang Q, Qin D, Luo Y, Li D, Shen Q, Toyoda T and Meng Q 2010 Electrochem. Commun. 12 1776
[27] Jovanovski V, González-Pedro V, Giménez S, Azaceta E, Cabañero G, Grande H, Tena-Zaera R, Mora-Seró I and Bisquert J 2011 J. Am. Chem. Soc. 133 20156
[28] Yang Z, Chen C Y, Liu C W, Li C L and Chang H T 2011 Adv. Energy Mater. 1 259
[29] Deng M, Huang S, Zhang Q, Li D, Luo Y, Shen Q, Toyoda T and Meng Q 2010 Chem. Lett. 39 1168
[30] Tachan Z, Shalom M, Hod I, Rühle S, Tirosh S and Zaban A 2011 J. Phys. Chem. C 115 6162
[31] Seol M, Ramasamy E, Lee J and Yong K 2011 J. Phys. Chem. C 115 22018
[32] Fang B, Kim M, Fan S Q, Kim J H, Wilkinson D P, Ko J and Yu J S 2011 J. Mater. Chem. 21 8742
[33] Santra P K and Kamat P V 2012 J. Am. Chem. Soc. 134 2508
[34] Zhang Q, Guo X, Huang X, Huang S, Li D, Luo Y, Shen Q, Toyoda T and Meng Q 2011 Phys. Chem. Chem. Phys. 13 4659
[35] González-Pedro V, Xu X, Mora-Seró I and Bisquert J 2010 ACS Nano 4 5783
[36] Barbé J C, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V and Grätzel M 1997 J. Am. Ceram. Soc. 80 3157
[37] Ito S, Murakami T N, Comte P, Liska P, Grätzel C, Nazeeruddin M K and Grätzel M 2008 Thin Solid Films 516 4613
[38] Guijarro N, Lana-Villarreal T, Shen Q, Toyoda T and Gómez R 2010 J. Phys. Chem. C 114 21928
[39] Sudhagar P, Jung J H, Park S, Lee Y G, Sathyamoorthy R, Kang Y S and Ahn H 2009 Electrochem. Commun. 11 2220
[40] Sudhagar P, Song T, Lee D H, Mora-Seró I, Bisquert J, Laudenslager M, Sigmund W M, Park Won Il, Paik U and Kang Y S 2011 J. Phys. Chem. Lett. 2 1984
[41] Samadpour M, Giménez S, Iraji-Zad A, Taghavinia N and Mora-SeróI 2012 Phys. Chem. Chem. Phys. 14 522
[42] Samadpour M, Giménez S, Boix P P, Shen Q, Calvo M E, Taghavinia N, Iraji-Zad A, Toyoda T, Míguez H and Mora-Seró I 2012 Electrochimica Acta 75 139
[43] Samadpour M, Taghavinia N, Iraji-Zad A, Marandi M and Tajabadi F 2012 Euro. Phys. J: Appl. Phys. 57 20401
[44] Lee H, Wang M, Chen P, Gamelin D R, Zakeeruddin S M, Grätzel M and Nazeeruddin M K 2009 Nano Lett. 9 4221
[45] Lee H J, Bang J, Park J, Kim S and Park S M 2010 Chem. Mater. 22 5636
[46] Shen Q, Kobayashi J, Diguna L J and Toyoda T 2008 J. Appl. Phys. 103 084304
[47] Hodes G, Manassen J and Cahen D 1980 J. Electrochem. Soc. 127 544
[48] Bisquert, J, Zaban A, Greenshtein M and Mora-Seró I 2004 J. Am. Chem. Soc. 126 13550
[49] Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G and Hagfeldt A 2005 Solar Energy Materials and Solar Cells 87 117
[50] Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I and Bisquert J 2011 Phys. Chem. Chem. Phys. 13 9083
[51] Barea E M, Shalom M, Giménez S, Hod I, Mora-Seró I, Zaban A and Bisquert J 2010 J. Am. Chem. Soc. 132 6834
[52] Braga A, Giménez S, Concina I, Vomiero A and Mora-Seró I 2011 J. Phys. Chem. Lett. 2 454
[53] Hod I, González-Pedro V, Tachan Z, Fabregat-Santiago F, Mora-Seró I, Bisquert J and Zaban A 2011 J. Phys. Chem. Lett. 2 3032
[1] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[2] Reconstruction and interpretation of photon Doppler velocimetry spectrum for ejecta particles from shock-loaded sample in vacuum
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Song-lin Dang(党松琳), Zong-Qiang Ma(马宗强), Hai-Quan Sun(孙海权), An-Min He(何安民), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(6): 066201.
[3] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[4] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[5] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[6] Numerical investigation on photonic microwave generation by a sole excited-state emitting quantum dot laser with optical injection and optical feedback
Zai-Fu Jiang(蒋再富), Zheng-Mao Wu(吴正茂), Wen-Yan Yang(杨文艳), Chun-Xia Hu(胡春霞), Yan-Hong Jin(靳艳红), Zhen-Zhen Xiao(肖珍珍), and Guang-Qiong Xia(夏光琼). Chin. Phys. B, 2021, 30(5): 050504.
[7] Phase transition of shocked water up to 6 GPa: Transmittance investigation
Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云). Chin. Phys. B, 2021, 30(5): 050701.
[8] Micro-scale photon source in a hybrid cQED system
Ming-Bo Chen(陈明博), Bao-Chuan Wang(王保传), Si-Si Gu(顾思思), Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2021, 30(4): 048507.
[9] Zebrafish imaging and two-photon fluorescence imaging using ZnSe quantum dots
Nan-Nan Zhang(张楠楠), Li-Ya Zhou(周立亚), Xiao Liu(刘潇), Zhong-Chao Wei(韦中超), Hai-Ying Liu(刘海英), Sheng Lan(兰胜), Zhao Meng(孟钊), and Hai-Hua Fan(范海华). Chin. Phys. B, 2021, 30(4): 044204.
[10] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[11] Electron transfer properties of double quantum dot system in a fluctuating environment
Lujing Jiang(姜露静), Kang Lan(蓝康), Zhenyu Lin(林振宇), and Yanhui Zhang(张延惠). Chin. Phys. B, 2021, 30(4): 040307.
[12] Bidirectional highly-efficient quantum routing in a T-bulge-shaped waveguide
Jia-Hao Zhang(张家豪), Da-Yong He(何大永), Gang-Yin Luo(罗刚银), Bi-Dou Wang(王弼陡), and Jin-Song Huang(黄劲松). Chin. Phys. B, 2021, 30(3): 034204.
[13] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[14] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[15] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
No Suggested Reading articles found!