Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 046802    DOI: 10.1088/1674-1056/23/4/046802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dynamic surface wettability of three-dimensional graphene foam

Huang Wen-Bina, Wang Guang-Longa, Gao Feng-Qia, Qiao Zhong-Taoa, Wang Gangb, Chen Min-Jiangb, Tao Lib, Deng Yab, Sun Lian-Fengb
a Institute of Nanotechnology and Microsystems, Mechanical Engineering College, Shijiazhuang 050003, China;
b National Center for Nanoscience and Technology, Beijing 100190, China
Abstract  In this work, three-dimensional graphene foams (GFs) are synthesized and characterized by scanning electron microscope (SEM) and Raman spectroscopy. The SEM images indicate that after the growth of graphene, the graphene covers the surface of nickel (Ni) foam uniformly. Raman spectra show that the percentages of monolayer, bilayer, trilayer, and multilayer graphenes are ~ 58%, ~ 32%, ~ 8%, and ~ 2%, respectively. The contact angle (CA) (~ 12°) of water droplet (3 μL) on GF is found to be larger than that on Ni foam (~ 107°), indicating that graphenes have changed the surface wettability of the Ni foam. Meanwhile, the dynamic characteristics of CA of water droplet on GF are different from those on Ni foam. The mechanisms for different behaviors are discussed, which are attributed to volatilization and seepage of water droplets.
Keywords:  graphene foam      CVD      surface wettability      contact angle  
Received:  21 August 2013      Revised:  09 October 2013      Accepted manuscript online: 
PACS:  68.08.De (Liquid-solid interface structure: measurements and simulations)  
  68.35.Ja (Surface and interface dynamics and vibrations)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774032 and 90921001) and the Key Knowledge InnovationProject of the Chinese Academy of Sciences on Water Science Research, Instrument DevelopingProject of the Chinese Academy of Sciences (Grant No. Y2010031).
Corresponding Authors:  Sun Lian-Feng     E-mail:  slf@nanoctr.cn
About author:  68.08.De; 68.35.Ja; 81.15.Gh

Cite this article: 

Huang Wen-Bin, Wang Guang-Long, Gao Feng-Qi, Qiao Zhong-Tao, Wang Gang, Chen Min-Jiang, Tao Li, Deng Ya, Sun Lian-Feng Dynamic surface wettability of three-dimensional graphene foam 2014 Chin. Phys. B 23 046802

[1] Weiss N O, Zhou H L, Liao L, Liu Y, Jiang S, Huang Y and Duan X F 2012 Adv. Mater. 24 5782
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[3] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[4] Balandin A A 2008 Nano Lett. 8 902
[5] Niyogi S 2006 J. Am. Chem. Soc. 128 7720
[6] Luo Z T, Lu Y, Somers L A and Johnson A T C 2009 J. Am. Chem. Soc. 131 898
[7] Yin J, Zhang Z H, Li X M, Zhou J X and Guo W L 2012 Nano Lett. 12 1736
[8] Wu H Q, Linghu C Y, Lü H M and Qian H 2013 Chin. Phys. B 22 098106
[9] Lu C H, Yang H H, Zhu C L, Chen X and Chen G N 2009 Angew. Chem. Int. Ed. 121 4879
[10] Chen Z P, Ren W C, Gao L B, Liu B L, Pei S F and Cheng H M 2011 Nat. Mater. 10 424
[11] Lee S H 2010 Angew. Chem. Int. Ed. 122 10282
[12] Yin S Y, Zhang Y Y, Kong J H, Zou C J, Li C M, Lu X H, Ma J, Boey F Y C and Chen X D 2011 ACS Nano 5 3831
[13] Ahn H S, Jang J W, Seol M, Kim J M, Yun D J, Park C, Kim H, Youn D H, Kim J Y, Park G, Park S C, Kim J M, Yu D I, Yong K, Kim M H and Lee J S 2013 Sci. Rep. 396 1
[14] Yuan Q Z and Zhao Y P 2010 Phys. Rev. Lett. 24 104
[15] Mei M F, Yu B M, Luo L and Cai J C 2010 Chin. Phys. Lett. 27 076802
[16] Gong M G, Liu Y Y and Xu X L 2010 Chin. Phys. B 19 106801
[17] Guo H K and Fang H P 2005 Chin. Phys. Lett. 22 787
[18] Atefi E, Mann J A and Tavana H 2013 Langmuir 4 17
[19] Menzies K L and Jones L 2010 Optom. Vision Sci. 87 387
[20] Aguilar-Mendoza J A, Rosales-Leal J I, Rodriguez-Valverde M A, Gonzalez-Lopez S and Cabrerizo-Vilchez M A 2008 Dent. Mater. 24 994
[21] Chen W, Fan Z L, Zeng G F and Lai Z P 2013 Journal of Power Sources 225 251
[22] Wang W R, Liang C and Li T 2013 Chin. Phys. B 22 028102
[23] Yan Z, Peng Z W, Sun Z Z, Yao J, Zhu Y, Liu Z, Ajayan P M and Tour J M 2011 ACS Nano 5 8187
[24] Yang H C, Chen M J, Zhou H Q, Qiu C Y, Hu L J, Yu F, Chu W G, Sun S Q and Sun L F 2011 J. Phys. Chem. C 115 16844
[25] Wu M H, Li X, Pan D, Liu L, Yang X X, Xu Z, Wang W L, Sui Y and Bai X D 2013 Chin. Phys. B 22 086101
[26] Yu F, Hu L J, Zhou H Q, Qiu C Y, Yang H C, Chen M J, Lu J L and Sun L F 2013 Journal of Nanoscience and Nanotechnology 13 1335
[27] Shi Z M, Dong J H and Ma W 2012 Adv. Mater. Res. 602 1735
[28] Mettu S and Chaudhury M K 2012 Langmuir 28 14100
[29] Malard L M, Pimenta M A, Dresselhaus G and Dresselhaus M S 2009 Phys. Rep. 473 51
[30] Dong J, Yao Z H, Yang T Z, Jiang L L and Shen C M 2013 Sci. Rep. 1733 1
[31] Papadopoulos P, Mammen L, Deng X, Vollmer D and Butt H J 2012 Chem. Lett. 41 1343
[32] Korhonen J T, Huhtamaki T, Ikkala O and Ras R H A 2013 Langmuir 29 3858
[33] Yu Y S 2012 Appl. Math. Mech. 33 1025
[34] Camuffo D 1984 Water, Air, and Pollution 21 151
[35] Zha D A, Mei S L, Wang Z Y, Li H J, Shi Z J and Jin Z X 2011 Carbon 49 5166
[1] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[2] Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD
Yudong Zhang(张玉栋), Jiale Tang(唐家乐), Yongjie Hu(胡永杰), Jie Yuan(袁杰), Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光辉), Xinying Shi(石新颖), Kaidong Xu(许开东), and Shiwei Zhuang(庄仕伟). Chin. Phys. B, 2021, 30(4): 048103.
[3] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[4] Mg acceptor activation mechanism and hole transport characteristics in highly Mg-doped AlGaN alloys
Qing-Jun Xu(徐庆君), Shi-Ying Zhang(张士英), Bin Liu(刘斌), Zhen-Hua Li(李振华), Tao Tao(陶涛), Zi-Li Xie(谢自力), Xiang-Qian Xiu(修向前), Dun-Jun Chen(陈敦军), Peng Chen(陈鹏), Ping Han(韩平), Ke Wang(王科), Rong Zhang(张荣), You-Liao Zheng(郑有炓). Chin. Phys. B, 2020, 29(5): 058103.
[5] Effect of overdrive voltage on PBTI trapping behavior in GaN MIS-HEMT with LPCVD SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Liang He(何亮), Qiu-Ling Qiu(丘秋凌), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(3): 037201.
[6] Evaluation of stress voltage on off-state time-dependent breakdown for GaN MIS-HEMT with SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Qiu-Ling Qiu(丘秋凌), Liu-An Li(李柳暗), Liang He(何亮), Jin-Wei Zhang(张津玮), Chen-Liang Feng(冯辰亮), Zhen-Xing Liu(刘振兴), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Yun-Liang Rao(饶运良), Zhi-Yuan He(贺致远), and Yang Liu (刘扬)†. Chin. Phys. B, 2020, 29(10): 107201.
[7] Annealing-enhanced interlayer coupling interaction inGaS/MoS2 heterojunctions
Xiuqing Meng(孟秀清), Shulin Chen(陈书林), Yunzhang Fang(方允樟), Jianlong Kou(寇建龙). Chin. Phys. B, 2019, 28(7): 078101.
[8] Wetting failure condition on rough surfaces
Feng-Chao Yang(杨冯超), Xiao-Peng Chen(陈效鹏). Chin. Phys. B, 2019, 28(4): 044701.
[9] The properties of surface nanobubbles formed on different substrates
Zheng-Lei Zou(邹正磊), Nan-Nan Quan(权楠楠), Xing-Ya Wang(王兴亚), Shuo Wang(王硕), Li-Min Zhou(周利民), Jun Hu(胡钧), Li-Juan Zhang(张立娟), Ya-Ming Dong(董亚明). Chin. Phys. B, 2018, 27(8): 086803.
[10] A multicomponent multiphase lattice Boltzmann model with large liquid-gas density ratios for simulations of wetting phenomena
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2017, 26(8): 084701.
[11] Magnesium incorporation efficiencies in MgxZn1-xO films on ZnO substrates grown by metalorganic chemical vapor deposition
Qi-Chang Hu(胡启昌), Kai Ding(丁凯). Chin. Phys. B, 2017, 26(6): 068104.
[12] Graphene/Mo2C heterostructure directly grown by chemical vapor deposition
Rongxuan Deng(邓荣轩), Haoran Zhang(张浩然), Yanhui Zhang(张燕辉), Zhiying Chen(陈志蓥), Yanping Sui(隋妍萍), Xiaoming Ge(葛晓明), Yijian Liang(梁逸俭), Shike Hu(胡诗珂), Guanghui Yu(于广辉), Da Jiang(姜达). Chin. Phys. B, 2017, 26(6): 067901.
[13] Semipolar (1122) and polar (0001) InGaN grown on sapphire substrate by using pulsed metal organic chemical vapor deposition
Sheng-Rui Xu(许晟瑞), Ying Zhao(赵颖), Ren-Yuan Jiang(蒋仁渊), Teng Jiang(姜腾), Ze-Yang Ren(任泽阳), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(2): 027801.
[14] Evaluation of threading dislocation density of strained Ge epitaxial layer by high resolution x-ray diffraction
Yuan-Hao Miao(苗渊浩), Hui-Yong Hu(胡辉勇), Xin Li(李鑫), Jian-Jun Song(宋建军), Rong-Xi Xuan(宣荣喜), He-Ming Zhang(张鹤鸣). Chin. Phys. B, 2017, 26(12): 127309.
[15] An easy way to controllably synthesize one-dimensional SmB6 topological insulator nanostructures and exploration of their field emission applications
Xun Yang(杨汛), Hai-Bo Gan(甘海波), Yan Tian(田颜), Ning-Sheng Xu(许宁生), Shao-Zhi Deng(邓少芝), Jun Chen(陈军), Huanjun Chen(陈焕君), Shi-Dong Liang(梁世东), Fei Liu(刘飞). Chin. Phys. B, 2017, 26(11): 118103.
No Suggested Reading articles found!