CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
An effective-field theory study of hexagonal Ising nanowire:Thermal and magnetic properties |
Yusuf Kocakaplana, Ersin Kantarb |
a Institute of Science, Erciyes University, 38039 Kayseri, Turkey; b Department of Physics, Erciyes University, 38039 Kayseri, Turkey |
|
|
Abstract By means of the effective-field theory (EFT) with correlations, the thermodynamic and magnetic quantities (such as magnetization, susceptibility, internal energy, specific heat, free energy, hysteresis curves, and compensation behaviors) of the spin-1/2 hexagonal Ising nanowire (HIN) system with core/shell structure have been presented. The hysteresis curves are obtained for different values of the system parameters, in both ferromagnetic and antiferromagnetic cases. It has been shown that the system only undergoes a second-order phase transition. Moreover, from the thermal variations of the total magnetization, the five compensation types can be found under certain conditions, namely the Q-, R-, S-, P-, and N-types.
|
Received: 31 July 2013
Revised: 04 October 2013
Accepted manuscript online:
|
PACS:
|
68.35.Rh
|
(Phase transitions and critical phenomena)
|
|
05.50.+q
|
(Lattice theory and statistics)
|
|
75.60.-d
|
(Domain effects, magnetization curves, and hysteresis)
|
|
62.23.Hj
|
(Nanowires)
|
|
Corresponding Authors:
Ersin Kantar
E-mail: ersinkantar@erciyes.edu.tr
|
About author: 68.35.Rh; 05.50.+q; 75.60.-d; 62.23.Hj |
Cite this article:
Yusuf Kocakaplan, Ersin Kantar An effective-field theory study of hexagonal Ising nanowire:Thermal and magnetic properties 2014 Chin. Phys. B 23 046801
|
[1] |
Skumryev V, Stoyanov, Zhang Y, Hadjipanayis G C, Givord D and Nogués J 2003 Nature 423 850
|
[2] |
Zhong Z, Wang D, Cui Y, Bockrath M W and Lieber C M 2003 Science 302 1377
|
[3] |
Liu Z, Zhang D, Han S, Li C, Lei B, Lu W, Fang J and Zhou C 2005 J. Am. Chem. Soc. 127 6
|
[4] |
Skomski R 2003 J. Phys.: Condens. Matter 15 841
|
[5] |
Denisov S I, Lyutyy T V, Hanggi P and Trohidou K N 2006 Phys. Rev. B 74 104406
|
[6] |
Zou X and Xiao G 2008 Phys. Rev. B 77 054417
|
[7] |
Berkowitz A E, Kodama R H, Makhlouf S A, Parker F T, Spada F E, McNiff E J and Foner S 1999 J. Magn. Magn. Mater. 196 591
|
[8] |
Alexiou C, Schmidt A, Klein R, Hullin P, Bergemann C and Arnold W 2002 J. Magn. Magn. Mater. 252 363
|
[9] |
Sounderya N and Zhang Y 2008 Rec. Pat. Biomed. Engin. 1 34
|
[10] |
Kurlyandskaya G V, Sanchez M L, Hernando B, Prida V M, Gorria P and Tejedor M 2003 Appl. Phys. Lett. 82 3053
|
[11] |
Nie S and Emory S R 1997 Science 275 1102
|
[12] |
Zeng H, Li J, Liu J P, Wang Z L and Sun S 2002 Nature 420 395
|
[13] |
Elliott D W and Zhang W X 2001 Environ. Sci. Tech. 35 4922
|
[14] |
Wegrowe J E, Kelly D, Jaccard Y, Guittienne Ph and Ansermet J Ph 1999 Europhys. Lett. 45 626
|
[15] |
Fert A and Piraux L 1999 J. Magn. Magn. Mater. 200 338
|
[16] |
Kodama R H 1999 J. Magn. Magn. Mater. 200 359
|
[17] |
Wang H, Zhou Y, Wang E and Lin D L 2001 Chin. J. Phys. 39 85
|
[18] |
Wang H, Zhou Y, Lin D L and Wang C 2002 Phys. Status Solidi B 232 254
|
[19] |
Garanin D A and Kachkachi H 2003 Phys. Rev. Lett. 90 65504
|
[20] |
Leite V S and Figueiredo W 2005 Physica A 350 379
|
[21] |
Kaneyoshi T 2009 Phys. Status Solidi B 246 2359
|
[22] |
Kaneyoshi T 2009 J. Magn. Magn. Mater. 321 3430
|
[23] |
Kaneyoshi T 2005 Phys. Status Solidi B 242 2938
|
[24] |
Kaneyoshi T 2010 J. Magn. Magn. Mater. 322 3014
|
[25] |
Kaneyoshi T 2011 J. Magn. Magn. Mater. 323 1145
|
[26] |
Kaneyoshi T 2012 Phase Transit. 85 264
|
[27] |
Kaneyoshi T 2011 Physica A 390 3697
|
[28] |
Kaneyoshi T 2011 Solid State Commun. 151 1528
|
[29] |
Kaneyoshi T 2011 Phys. Status Solidi B 248 250
|
[30] |
Canko O, Erdinc A, Taskın F and Atis M 2011 Phys. Lett. A 375 3547
|
[31] |
Wang C D, Lu Z Z, Yuan W X, Kwok S Y and Teng B H 2011 Phys. Lett. A 375 3405
|
[32] |
Keskin M, ŞarlıN and Deviren B 2011 Solid State Commun. 151 1025
|
[33] |
Kaneyoshi T 2012 Physica A 391 3616
|
[34] |
ŞarlıN 2013 Physica B 411 12
|
[35] |
Canko O, Erdinc A, Taskın F and Yıldırım A F 2012 J. Magn. Magn. Mater. 324 508
|
[36] |
Jiang W, Guan H, Wang Z and Guo A 2012 Physica B 407 378
|
[37] |
Kaneyoshi T 2012 Solid State Commun. 152 883
|
[38] |
Bouhou S, Essaoudi I, Ainane A, Saber M, Dujardin F and de Miguel J J 2012 J. Magn. Magn. Mater. 324 2434
|
[39] |
Liu L M, Jiang W, Wang Z, Guan H Y and Guo A B 2012 J. Magn. Magn. Mater. 324 4034
|
[40] |
Jiang W, Guan H Y, Wang Z and Guo A B 2012 Physica B 407 378
|
[41] |
Jiang W, Zhang F, Li X X, Guan H Y, Guo A B and Wang Z 2013 Physica E 47 95
|
[42] |
Jiang W, Li X X and Liu L M 2013 Physica E 53 29
|
[43] |
Eftaxias E and Trohidou K N 2005 Phys. Rev. B 71 134406
|
[44] |
Iglesias O, Batlle X and Labarta A 2005 Phys. Rev. B 72 212401
|
[45] |
Kechrakos D, Trohidou K N and Vasilakaki M 2007 J. Magn. Magn. Mater. 316 e291
|
[46] |
Hu Y and Du A 2007 J. Appl. Phys. 102 113911
|
[47] |
Trohidou K N, Vasilakaki M, Bianco L Del, Fiorani D and Testa A M 2007 J. Magn. Magn. Mater. 316 e82
|
[48] |
Wu M H, Li Q C and Liu J M 2007 J. Phys.: Condens. Matter 19 186202
|
[49] |
Iglesias O, Batlle X and Labarta A 2007 J. Phys.: Condens. Matter 19 406232
|
[50] |
Iglesias O, Batlle X and Labarta A 2008 J. Nanosci. Nanotechnol. 8 2761
|
[51] |
Vasilakaki M, Eftaxias E and Trohidou K N 2008 Phys. Status Solidi A 205 1865
|
[52] |
Vasilakaki M and Trohidou K N 2009 Phys. Rev. B 79 144402
|
[53] |
Hu Y and Du A 2009 Phys. Status Solidi B 246 2384
|
[54] |
Hu Y, Liu L and Du A 2010 Phys. Status Solidi B 247 972
|
[55] |
Zaim A, Kerouad M and Amraoui Y El 2009 J. Magn. Magn. Mater. 321 1083
|
[56] |
Zaim A and Kerouad M 2010 Physica A 389 3435
|
[57] |
Jiang L, Zhang J, Chen Z, Feng Q and Huang Z 2010 Physica B 405 420
|
[58] |
Yüksel Y, Aydıner E and Polat H 2011 J. Magn. Magn. Mater. 323 3168
|
[59] |
Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1953 J. Chem. Phys. 21 1087
|
[60] |
Neél L 1948 Annals of Physics (Amsterdam: Netherlands) 3 137
|
[61] |
Chikazumi S 1997 Physics of Ferromagnetism (Oxford: Oxford University Press)
|
[62] |
Zhou H, Yiu Y, Aronson M C and Wong S S 2008 J. Solid State Chem. 181 1539
|
[63] |
Duan J, Liu J, Cornelius T W, Yao H, Mo D, Chen Y, Zhang L, Sun Y, Hou M, Trautmann C and Neumann R 2009 Nucl. Instrum. Methods Phys. Res. B 267 2567
|
[64] |
Fleaca C T, Morjan I, Alexandrescu R, Dumitrache F, Soare I, Gavrila-Florescu L, Normand F Le and Derory A 2009 Appl. Surf. Sci. 255 5386
|
[65] |
Lupu N, Lostun L and Chiriac H 2010 J. Appl. Phys. 107 09E315
|
[66] |
Wu H W, Tsai C J and Chen L J 2007 Appl. Phys. Lett. 90 043121
|
[67] |
Curiale J, Sanchez R D, Troiani H E, Leyva A G and Levy P 2005 Appl. Phys. Lett. 87 043113
|
[68] |
Zaim A, Kerouad M and Amraoui Y El 2009 J. Magn. Magn. Mater. 321 1077
|
[69] |
Chong Y T, Gorlitz D, Martens S, Yau M Y E, Allende S, Bachmann J and Nielsch K 2010 Adv. Mater. 22 2435
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|