Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 046106    DOI: 10.1088/1674-1056/23/4/046106
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Improving light trapping and conversion efficiency of amorphous silicon solar cell by modified and randomly distributed ZnO nanorods

Jia Zhi-Nana b, Zhang Xiao-Dana, Liu Yanga, Wang Yan-Fenga, Fan Juna c, Liu Cai-Chib, Zhao Yinga
a Institute of Photo-Electronics Thin Film Devices and Technology of Nankai University, Key Laboratory of Photo-Electronics Thin Film Devices and Technology of Tianjin, Tianjin 300071, China;
b School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China;
c School of Information and Engineering, Hebei University of Technology, Tianjin 300130, China
Abstract  Three-dimensional (3D) nanostructures in thin film solar cells have attracted significant attention due to their applications in enhancing light trapping. Enhanced light trapping can result in more effective absorption in solar cells, thus leading to higher short-circuit current density and conversion efficiency. We develop randomly distributed and modified ZnO nanorods, which are designed and fabricated by the following processes: the deposition of a ZnO seed layer on substrate with sputtering, the wet chemical etching of the seed layer to form isolated islands for nanorod growth, the chemical bath deposition of the ZnO nanorods, and the sputtering deposition of a thin Al-doped ZnO (ZnO:Al) layer to improve the ZnO/Si interface. Solar cells employing the modified ZnO nanorod substrate show a considerable increase in solar energy conversion efficiency.
Keywords:  random ZnO nanorod      light trapping Al-doped ZnO      solar cells  
Received:  14 July 2013      Revised:  09 October 2013      Accepted manuscript online: 
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  78.35.+c (Brillouin and Rayleigh scattering; other light scattering)  
  77.55.hf (ZnO)  
  88.40.H- (Solar cells (photovoltaics))  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00706 and 2011CBA00707), the High-Technology Research and Development Program of China (Grant No. 2013AA050302), the Science and Technology Support Program of Tianjin City, China (Grant No. 12ZCZDGX03600), the Major Science and Technology SupportProject of Tianjin City, China (Grant No. 11TXSYGX22100), and the Specialized Research Fund for the Ph. D. Program of Higher Education, China (Grant No. 20120031110039).
Corresponding Authors:  Zhang Xiao-Dan     E-mail:  xdzhang@nankai.edu.cn
About author:  61.46.Km; 78.35.+c; 77.55.hf; 88.40.H-

Cite this article: 

Jia Zhi-Nan, Zhang Xiao-Dan, Liu Yang, Wang Yan-Feng, Fan Jun, Liu Cai-Chi, Zhao Ying Improving light trapping and conversion efficiency of amorphous silicon solar cell by modified and randomly distributed ZnO nanorods 2014 Chin. Phys. B 23 046106

[1] Hsu M C, Battaglia C, Pahud C, Ruan Z C, Haug F J, Fan S H, Ballif C and Cui Y 2012 Adv. Mater. 2 628
[2] Fan Z Y, Azavi H, Do J W, Moriwaki A, Ergen O, Chueh Y L, Leu P W, Ho J C, Takahashi T, Reichertz L A, Neale S, Yu K, Wu M, Ager J W and Javey A 2009 Nat. Mater. 8 648
[3] Bai A Q, Zheng J, Tao Y L, Zuo Y H, Xue C L, Cheng B W and Wang Q M 2011 Chin. Phys. B 20 116103
[4] Jeong S, Hu L, Lee H R, Garnett E, Choi J W and Cui Y 2010 Nano Lett. 10 2989
[5] Kim J, Hong A J, Nah J W, Shin B, Ross F M and Sadana D K 2012 ACS Nano. 6 265
[6] Zhou H J, Wissinger M, Fallert J, Hauschild R and Stelzl F 2007 Phys. Lett. 91 181112
[7] Wang X D, Summers C J and Wang Z L 2004 Nano Lett. 4 423
[8] Yang C J, Wang S M and Liang S W 2007 Appl. Phys. Lett. 90 033104
[9] Battaglia C, Hsu C M, Söderström K, Escarré J, Haug F J, Charriére M, Boccard M, Despeisse M, Alexander D T L, Cantoni M, Cui Y and Ballif C 2012 ACS Nano. 6 2790
[10] Lin A and Phillips J 2008 Sol. Energy Mater. Sol. Cells 92 1689
[11] Niederberger M and Cölfen H 2006 Phys. Chem. Chem. Phys. 8 3271
[12] Liu D F, Xiang Y J, Wu X C, Zhang Z X, Liu L F, Song L, Zhao X W, Luo S D, Ma W J, Shen J, Zhou W Y, Wang G, Wang C Y and Xie S S 2006 Nano Lett. 6 2375
[13] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P D 2001 Science 292 1897
[14] Pan N, Xue H, Yu M, Cui X, Wang X, Hou G, Huang J and Deng S Z 2010 Nanotechnology 21 225707
[15] Li Y B, Pan H, Lin J Y, Ding J, Feng Y P, Thongmee S, Liu T, Gong H and Wang L 2008 Adv. Mater. 20 1170
[16] Erdélyi R, Nagata T, Rogers D J, Teherani F H, Horváth Z E, Lábadi Z, Baji Z, Wakayam Y and Volk J 2011 Cryst. Growth Des. 11 2515
[17] Qin Y, Wang X and Wang Z L 2008 Nature 451 809
[18] Lee Y J, Sounart T L, Liu J, Spoerke E D, McKenzie B B, Hsu J W P and Voigt J A 2008 Cryst. Growth Des. 8 2036
[19] Law M, Greene L E, Johnson J C, Saykally R and Yang P D 2005 Nat. Mater. 4 455
[20] Yu M, Long Y Z, Sun B and Fan Z Y 2012 Nanoscale 4 2783
[21] Xu C and Wang Z L 2011 Adv. Mater. 23 873
[22] Greene L E, Law M, Tan D H, Montano M, Goldberger J, Somorjai G and Yang P D 2005 Nano Lett. 5 1231
[23] Ferry V E, Verschuuren M A, Li H B T, Verhagen E, Walters R J, Schropp R E I, Atwater H A and Polman A 2010 Opt. Express 18 A237
[24] Spinelli P, Verschuuren M A and Polman A 2012 Nat. Commun. 3 692
[25] Green M A 1982 Solar Cells: Operating Principles, Technology, and System Applications (New Jersey: Prentice-Hall)
[26] Kieven D, Dittrich T, Belaidi A, Tornow J, Schwarzburg K, Allsop N and Lux-Steiner M 2008 Appl. Phys. Lett. 92 153107
[27] Spurgeon J M, Atwater H A and Lewis N S 2008 J. Phys. Chem. C 112 6186
[28] Krunks M, Kärber E, Katerski A, Otto K, Acik I O, Dedova T and Mere A 2010 Sol. Energy Mater. Sol. Cells 94 1191
[29] Kelzenberg M D, Boettcher S W, Petykiewicz J A, Turner-Evans D B, Putnam M C, Warren E L, Spurgeon J M, Briggs R M, Lewis N S and Atwater H A 2010 Nat. Mater. 9 239
[30] Zhu J, Yu Z, Burkhard G F, Hsu C M, Connor S T, Xu Y, Wang Q, Mc Gehee M, Fan S and Cui Y 2009 Nano Lett. 9 279
[31] Kuang Y, Werf K H M, Houweling Z S and Schropp R E I 2011 Appl. Phys. Lett. 98 113111
[32] Ferry V E, Verschuuren M A, Lare M C, Schropp R E I, Atwater H A and Polman A 2011 Nano Lett. 11 4239
[1] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[2] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[3] A 9% efficiency of flexible Mo-foil-based Cu2ZnSn(S, Se)4 solar cells by improving CdS buffer layer and heterojunction interface
Quan-Zhen Sun(孙全震), Hong-Jie Jia(贾宏杰), Shu-Ying Cheng(程树英), Hui Deng(邓辉)\ccclink, Qiong Yan(严琼), Bi-Wen Duan(段碧雯), Cai-Xia Zhang(张彩霞), Qiao Zheng(郑巧), Zhi-Yuan Yang(杨志远), Yan-Hong Luo(罗艳红), Qing-Bo Men(孟庆波), and Shu-Juan Huang(黄淑娟). Chin. Phys. B, 2020, 29(12): 128801.
[4] The effect of Mn-doped ZnSe passivation layer on the performance of CdS/CdSe quantum dot-sensitized solar cells
Yun-Long Deng(邓云龙), Zhi-Yuan Xu(徐知源), Kai Cai(蔡凯), Fei Ma(马飞), Juan Hou(侯娟), Shang-Long Peng(彭尚龙). Chin. Phys. B, 2019, 28(9): 098802.
[5] Exploring alkylthiol additives in PBDB-T:ITIC blended active layers for solar cell applications
Xiang Li(李想), Zhiqun He(何志群), Mengjie Sun(孙盟杰), Huimin Zhang(张慧敏), Zebang Guo(郭泽邦), Yajun Xu(许亚军), Han Li(李瀚), Chunjun Liang(梁春军), Xiping Jing(荆西平). Chin. Phys. B, 2019, 28(8): 088802.
[6] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[7] Methodical review of the literature referred to the dye-sensitized solar cells: Bibliometrics analysis and road mapping
Karwan Wasman Qadir, Qayyum Zafar, Nader Ale Ebrahim, Zubair Ahmad, Khaulah Sulaiman, Rizwan Akram, Mohammad Khaja Nazeeruddin. Chin. Phys. B, 2019, 28(11): 118401.
[8] Detection of finger interruptions in silicon solar cells using photoluminescence imaging
Lei Zhang(张磊), Peng Liang(梁鹏), Hui-Shi Zhu(朱慧时), Pei-De Han(韩培德). Chin. Phys. B, 2018, 27(6): 068801.
[9] Efficient ternary organic solar cells with high absorption coefficient DIB-SQ as the third component
Hui-Xin Qi(齐慧欣), Bo-Han Yu(余泊含), Sai Liu(刘赛), Miao Zhang(张苗), Xiao-Ling Ma(马晓玲), Jian Wang(王健), Fu-Jun Zhang(张福俊). Chin. Phys. B, 2018, 27(5): 058802.
[10] Application of millimeter-sized polymer cylindrical lens array concentrators in solar cells
Yao-Ju Zhang(张耀举), Yi-Jie Li(李艺杰), Jie Lin(林洁), Chao-Long Fang(方朝龙), Si-Yuan Liu(刘思远). Chin. Phys. B, 2018, 27(5): 058801.
[11] Factors influencing the performance of paintable carbon-based perovskite solar cells fabricated in ambient air
Wei-Kang Xu(许伟康), Feng-Xiang Chen(陈凤翔), Gong-Hui Cao(曹功辉), Jia-Qi Wang(王嘉绮), Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2018, 27(3): 038402.
[12] Interfaces of high-efficiency kesterite Cu2ZnSnS(e)4 thin film solar cells
Shoushuai Gao(高守帅), Zhenwu Jiang(姜振武), Li Wu(武莉), Jianping Ao(敖建平), Yu Zeng(曾玉), Yun Sun(孙云), Yi Zhang(张毅). Chin. Phys. B, 2018, 27(1): 018803.
[13] Precisely tuning Ge substitution for efficient solution-processed Cu2ZnSn(S, Se)4 solar cells
Xinshou Wang(王新收), Dongxing Kou(寇东星), Wenhui Zhou(周文辉), Zhengji Zhou(周正基), Qingwen Tian(田庆文), Yuena Meng(孟月娜), Sixin Wu(武四新). Chin. Phys. B, 2018, 27(1): 018809.
[14] Effect of hydroxyl on dye-sensitized solar cells assembled with TiO2 nanorods
Lijian Meng(孟立建), Tao Yang(杨涛), Sining Yun(云斯宁), Can Li(李灿). Chin. Phys. B, 2018, 27(1): 016802.
[15] Theoretical study on the kesterite solar cells based on Cu2ZnSn(S,Se)4 and related photovoltaic semiconductors
Dingrong Liu(刘定荣), Dan Han(韩丹), Menglin Huang(黄梦麟), Xian Zhang(张弦), Tao Zhang(张涛), Chenmin Dai(戴称民), Shiyou Chen(陈时友). Chin. Phys. B, 2018, 27(1): 018806.
No Suggested Reading articles found!