Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 028103    DOI: 10.1088/1674-1056/23/2/028103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Transparent conductive graphene films prepared by hydroiodic acid and thermal reduction

Qin Meng-Meng, Ji Wei, Feng Yi-Yu, Feng Wei
School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
Abstract  Transparent conductive graphene films are fabricated by the transfer printing of graphene aqueous dispersion followed by hydrohalic acids and thermal reduction. Results indicate that the graphene film reduced by hydroiodic acid (HI) reduction combined with thermal treatment shows a higher electrical conductivity than that reduced only by thermal treatment at the same transparency. A film with a sheet resistance of ~2400 Ω/sq at a transparency over 72% is obtained at a typical wavelength of 550 nm.
Keywords:  graphene      hydroiodic acid      thermal reduction      sheet resistance  
Received:  31 March 2013      Revised:  29 May 2013      Published:  12 December 2013
PACS:  81.05.ue (Graphene)  
  81.05.U- (Carbon/carbon-based materials)  
  68.65.Pq (Graphene films)  
Fund: Project supported by the National Key Basic Research Program of China (Grant Nos. 2012CB626800 and 2010CB934700) and the National Natural Science Foundation of China (Grant Nos. 51073115, 51003072, 51173127, and 51273144).
Corresponding Authors:  Feng Wei     E-mail:  weifeng@tju.edu.cn
About author:  81.05.ue; 81.05.U-; 68.65.Pq

Cite this article: 

Qin Meng-Meng, Ji Wei, Feng Yi-Yu, Feng Wei Transparent conductive graphene films prepared by hydroiodic acid and thermal reduction 2014 Chin. Phys. B 23 028103

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T and Ruoff R S 2007 Nature 448 457
[3] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes, Jia Y Y, Wu Y, Nguyen S T and Ruoff R S 2007 Carbon 45 1558
[4] Wang D W, Li F, Zhao J P, Ren W C, Chen Z G, Tan J, Wu Z S, Gentle L, Lu G Q and Cheng H M 2009 ACS Nano 3 1745
[5] Becerril H A, Mao J, Liu Z F, Stoltenberg R M, Bao Z N and Chen Y S 2008 ACS Nano 2 463
[6] Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeony H K, Kim J K, Choi J Y and Lee Y H 2009 Adv. Funct. Mater. 19 1987
[7] Cote L J, Kim F and Huang J X 2009 J. Am. Chem. Soc. 131 1043
[8] Mkhoyan K A, Contryman A W, Silcox J, Stewart D A, Eda G, Mattevi C, Miller S and Chhowalla M 2009 Nano Lett. 9 1058
[9] Wang H L, Robinson J T, Li X L and Dai H J 2009 J. Am. Chem. Soc. 131 9910
[10] Chen J Y, Zhang H L, Huang L P, Wu B, Wei D C and Liu Y Q 2009 Physics 38 387 (in Chinese)
[11] Wang X, Zhi L J and Mullen K 2008 Nano Lett. 8 323
[12] Fan X B, Peng W C, Li Y, Li X Y, Wang S L, Zhang G L and Zhang F B 2008 Adv. Mater. 20 4490
[13] Pei S F, Zhao J P, Du J H, Ren W C and Cheng H M 2010 Carbon 48 4466
[14] Song L, Khoerunnisa F, Gao W, Dou W H, Hayashi T, Kaneko K, Endo M and Ajayan P M 2013 Carbon 52 608
[15] Wang S J, Geng Y, Zheng Q B and Kim J K 2010 Carbon 48 1815
[16] Zheng Q B, Ip W H, Lin X Y, Yousefi N, Yeung K K, Li Z G and Kim J K 2011 ACS Nano 5 6039
[17] Zhao J P, Pei S F, Ren W C, Gao L B and Cheng H M 2010 ACS Nano 4 5245
[18] Chen W F, Yan L F and Bangal P R 2010 Carbon 48 1146
[19] Tang L H, Feng H B, Cheng J S and Li J H 2010 Chem. Commun. 46 5882
[20] Yu A P, Rose I, Davies A and Chen Z W 2010 Appl. Phys. Lett. 96 253105
[21] Zhao B, Liu P, Jiang Y, Pan D Y, Tao H H, Song J S, Fang T and Xu W W 2012 J. Power Sources 198 423
[22] Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A and Saito R 2007 Phys. Chem. Chem. Phys. 9 1276
[23] Lee V, Whittaker L, Jayer C, Baroudi K M, Fischer D A and Banerjee S 2009 Chem. Mater. 21 3905
[24] Ganguly A, Sharma S, Papakonstantinou P and Hamilton J 2011 J. Phys. Chem. C 115 17009
[25] Wang X, Zhi L J, Tsao N, Tomovic Z, Li J L and Mullen K 2008 Angew. Chem. Int. Ed. 47 2990
[26] Li X L, Zhang G Y, Bai X D, Sun X M, Wang X R, Wang E and Dai H J 2008 Nat. Nanotechnol. 3 538
[27] Yamaguchi H, Eda G, Mattevi C, Kim H and Chhowalla M 2010 ACS Nano 4 524
[28] Kim U J, Liu X M, Furtado C A, Chen G, Saito R, Jiang J, Dresselhaus M S and Eklund P C 2005 Phys. Rev. Lett. 95 157402
[29] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N and Heer W A 2006 Science 312 1191
[30] Zhi L J, Wu J S, Li J, Kolb U and Mullen K 2005 Angew. Chem. Int. Ed. 44 2120
[1] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[2] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[3] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[4] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[5] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[6] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[7] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[8] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[9] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[10] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
[11] Application of graphene vertical field effect to regulation of organic light-emitting transistors
Hang Song(宋航), Hao Wu(吴昊), Hai-Yang Lu(陆海阳), Zhi-Hao Yang(杨志浩), Long Ba(巴龙). Chin. Phys. B, 2020, 29(5): 057401.
[12] General principles to high-throughput constructing two-dimensional carbon allotropes
Qing Xie(谢庆), Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2020, 29(3): 037306.
[13] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[14] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[15] Triphenylene adsorption on Cu(111) and relevant graphene self-assembly
Qiao-Yue Chen(陈乔悦), Jun-Jie Song(宋俊杰), Liwei Jing(井立威), Kaikai Huang(黄凯凯), Pimo He(何丕模), Hanjie Zhang(张寒洁). Chin. Phys. B, 2020, 29(2): 026801.
No Suggested Reading articles found!