Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 028101    DOI: 10.1088/1674-1056/23/2/028101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Occurrence and elimination of in-plane misoriented crystals in AlN epilayers on sapphire via pre-treatment control

Wang Hu (王虎)a, Xiong Hui (熊晖)a, Wu Zhi-Hao (吴志浩)a, Yu Chen-Hui (余晨辉)a b, Tian Yu (田玉)a, Dai Jiang-Nan (戴江南)a, Fang Yan-Yan (方妍妍)a, Zhang Jian-Bao (张健宝)a, Chen Chang-Qing (陈长清)a
a Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
b Jiangsu Key Laboratory of Application Specific Integrated Circuit Design, Nantong University, Nantong 226019, China
Abstract  AlN epilayers are grown directly on sapphire (0001) substrates each of which has a low temperature AlN nucleation layer. The effects of pretreatments of sapphire substrates, including exposures to NH3/H2 and to H2 only ambients at different temperatures, before the growth of AlN epilayers is investigated. In-plane misoriented crystals occur in N-polar AlN epilayers each with pretreatment in a H2 only ambient, and are characterized by six 60°-apart peaks with splits in each peak in (1012) phi scan and two sets of hexagonal diffraction patterns taken along the [0001] zone axis in electron diffraction. These misoriented crystals can be eliminated in AlN epilayers by the pretreatment of sapphire substrates in the NH3/H2 ambient. AlN epilayers by the pretreatment of sapphire substrates in the NH3/H2 ambient are Al-polar. Our results show the pretreatments and the nucleation layers are responsible for the polarities of the AlN epilayers. We ascribe these results to the different strain relaxation mechanisms induced by the lattice mismatch of AlN and sapphire.
Keywords:  AlN      misoriented      polar      nitridation  
Received:  03 April 2013      Revised:  08 July 2013      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  68.55.A- (Nucleation and growth)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB923204 and 2012CB619302), the National Natural Science Foundation of China (Grant Nos. 60976042, 60906023, 61006046, 51002058, and 11104150), and the Major Program of the National Natural Science Foundation of China (Grant No. 10990100).
Corresponding Authors:  Fang Yan-Yan     E-mail:  yanyan.fang@mail.hust.edu.cn
About author:  81.05.Ea; 68.55.A-; 81.15.Gh

Cite this article: 

Wang Hu (王虎), Xiong Hui (熊晖), Wu Zhi-Hao (吴志浩), Yu Chen-Hui (余晨辉), Tian Yu (田玉), Dai Jiang-Nan (戴江南), Fang Yan-Yan (方妍妍), Zhang Jian-Bao (张健宝), Chen Chang-Qing (陈长清) Occurrence and elimination of in-plane misoriented crystals in AlN epilayers on sapphire via pre-treatment control 2014 Chin. Phys. B 23 028101

[1] Du X Z, Lu H, Chen D J, Xiu X Q, Zhang R and Zheng Y D 2010 Chin. Phys. Lett. 27 088105
[2] Ren F, Hao Z B, Zhang C, Hu J N and Luo Y 2010 Chin. Phys. Lett. 27 068101
[3] Paduano Q S and Weyburne D W 2003 Jpn. J. Appl. Phys. 42 1590
[4] Hirayama H, Yatabe T, Noguchi N and Kamata N 2010 Electronics and Communications in Japan 93 24
[5] Nikishin S, Borisov B, Pandikunta M, Dahal R, Lin J Y, Jiang H X, Harris H and Holtz M 2009 Appl. Phys. Lett. 95 054101
[6] Banal R G, Funato M and Kawakami Y 2008 Appl. Phys. Lett. 92 241905
[7] Grandjean N, Massies J and Leroux M 2006 Appl. Phys. Lett. 69 2071
[8] Wickenden A E, Koleske D D, Henry R L, Gorman R J, Culbertson J C and Twigg M E 1999 J. Electron. Mater. 28 301
[9] Grandjean N, Massies J, Vennegues P, Laugt M and Leroux M 1997 Appl. Phys. Lett. 70 643
[10] Kim M H, Sone C, Yi J H and Yoon E 1997 Appl. Phys. Lett. 71 1228
[11] Wu Y, Hanlon A, Kaeding J F, Sharma R, Fini P T, Nakamura S and Speck J S 2004 Appl. Phys. Lett. 84 912
[12] Jasinski J, Weber Z L, Paduano Q S and Weyburne D W 2003 Appl. Phys. Lett. 83 2811
[13] Paduano Q S, Weyburne D W, Jasinski J and Weber L Z 2004 J. Cryst. Growth 261 259
[14] Takeuchi M, Shimizu H, Kajitani R, Kawasaki K, Kinoshita T, Takada K, Murakami H, Kumagai Y, Koukitu A, Koyama T, Chichibu S F and Aoyagi Y 2007 J. Cryst. Growth 305 360
[15] Uchida K, Watanabe A, Yano F, Kouguchi M, Tanaka T and Minagawa S 1996 J. Appl. Phys. 79 3487
[16] Zhuang D, Edgar J H, Strojek B, Chaudhuri J and Rek Z 2004 J. Cryst. Growth 262 89
[17] Golan Y, Fini P, DenBaars S P and Speck J S 1998 Jpn. J. Appl. Phys. 37 4695
[18] Vennégués P and Beaumont B 1999 Appl. Phys. Lett. 75 4115
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] A simple semiempirical model for the static polarizability of electronically excited atoms and molecules
Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski. Chin. Phys. B, 2023, 32(4): 043301.
[3] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[4] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[5] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[6] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[7] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[8] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[9] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[10] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[11] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[12] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[13] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[14] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[15] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
No Suggested Reading articles found!