Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 027804    DOI: 10.1088/1674-1056/23/2/027804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Numerical demonstration of three-dimensional terahertz metamaterials based on the causality principle

Saeid Jamilan, Javad Nourinia, Mohammad Naghi Azarmanesh
Department of Electrical Engineering, Urmia University, Urmia, Iran
Abstract  A parameter retrieval algorithm based on the causality principle and Kramers–Kronig (KK) relations is employed to calculate the effective parameters of three-dimensional (3D) metamaterials. Using KK relations, the branch selecting problem, which is the challenge of effective parameter retrieval method, can be removed. To reveal the validity of the proposed algorithm, the constitutive refractive index of a homogeneous polymide cube is extracted. The result is in excellent agreement with the intrinsic refractive index of the polymide. Finally, the two terahertz metamaterials with 3D structures are designed and their effective parameters are then retrieved using the proposed algorithm. Numerical simulations are performed using the full-wave electromagnetic solver, CST Microwave Studio.
Keywords:  metamaterial      three-dimensional      causality principle      Kramers–Kronig relations  
Received:  08 July 2013      Revised:  16 August 2013      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  87.50.U-  
Corresponding Authors:  Saeid Jamilan     E-mail:  saeid.jamilan@gmail.com
About author:  78.67.Pt; 78.20.Ci; 87.50.U-

Cite this article: 

Saeid Jamilan, Javad Nourinia, Mohammad Naghi Azarmanesh Numerical demonstration of three-dimensional terahertz metamaterials based on the causality principle 2014 Chin. Phys. B 23 027804

[1] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
[2] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[3] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[4] Fan Y N, Cheng Y Z, Nie Y, Wang X and Gong R Z 2013 Chin. Phys. B 22 067801
[5] Cheng Y and Yang H 2010 J. Appl. Phys. 108 034906
[6] Zhu B, Wang Z, Huang C, Feng Y, Zhao J and Jiang T 2010 Prog. Electromagn. Res. 101 231
[7] Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
[8] Pendry J B, Holden A J, Stewart W J and Robbins D J 1998 J. Phys.: Condens. Matter 10 4785
[9] Pendry J B, Holden A J, Robins D J and Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[10] Baena J D, Marques R Medina F and Martel J 2004 Phys. Rev. B 69 014402
[11] Wang D, Ran L, Chen H, Mu M, Kongand J A and Wu B I 2007 Appl. Phys. Lett. 90 254103
[12] Chen H T, Padilla W, Cich M J, Azad A K, Averitt R D and Taylor A J 2009 Nat. Photon. 3 148
[13] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 Opt. Express 16 7181
[14] Chen H T, O’Hara J F, Azad A K, Taylor A J, Averitt R D, Shrekenhamer D B and Padilla W J 2008 Nat. Photon. 2 295
[15] He X J, Wang Y, Geng Z X, Wang J M and Gui T L 2011 J. Magn. Magn. Mater. 323 2425
[16] Brener I, Burckel D B, Wendt J R, Ten Eyck G A, Ellis A R and Sinclair M B 2010 SPIE Newsroom 10.1117/2.1201007.003174
[17] Vignolini S, Yufa N A, Cunha P S, Guldin S, Rushkin I, Stefik M, Hur K, Wiesner U, Baumberg J J and Steiner U 2012 Adv. Opt. Mater. 24 23
[18] Fan K, Strikwerda A C, Tao H, Zhang X and Averitt R D 2011 36th International Conference on Infrared, Millimeter and Terahertz Waves, October 2–7, 2011, Houston, TX, USA
[19] Valentine J, Zhang S, Zentgraf Th, Ulin-Avila E, Genov D A, Bartal G and Zhang X 2008 Nature Lett. 455 376
[20] Gong B and Zhao X 2011 Opt. Express 19 289
[21] Smith D R, Vier D C, Koschny Th and Soukoulis C M 2005 Phys. Rev. E 71 036617
[22] Chen X D, Grzegorczyk T M, Wu B I, Pacheco J Jr and Kong J A 2004 Phys. Rev. E 70 016608
[23] Varadan V and Ro R 2007 IEEE Trans Microwave Theory Tech. 55 2224
[24] Szabó Z, Park G H, Hedge R and Li E P 2010 IEEE Trans. Microwave Theory Tech. 58 2646
[25] Peiponen K E, Lucarini V, Vartiainen E M and Saarinen J J 2004 Eur. Phys. J. B 41 61
[26] Nussenzveig H M 1972 Causality and Dispersion Relations (London and New York: Academic Press) pp. 15–28 and 43–45
[27] Fearn H 2006 J. Mod. Opt. 53 2581
[28] Hou Z L, Kong L B, Jin H B, Cao M S, Li X and Qi X 2012 Chin. Phys. Lett. 29 017701
[29] Wu B I, Wang W, Pacheco J, Chen X, Grzegorczyk T and Kong J A 2005 Prog. Electromagn. Res. 51 295
[1] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[4] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[5] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[6] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[7] Three-dimensional coupled-mode model and characteristics of low-frequency sound propagation in ocean waveguide with seamount topography
Ya-Xiao Mo(莫亚枭), Chao-Jin Zhang(张朝金), Li-Cheng Lu(鹿力成), and Sheng-Ming Guo(郭圣明). Chin. Phys. B, 2022, 31(8): 084301.
[8] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[9] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[10] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[11] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[12] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[13] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[14] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[15] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
No Suggested Reading articles found!