Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 116105    DOI: 10.1088/1674-1056/23/11/116105
SPECIAL TOPIC—Non-equilibrium phenomena in soft matters Prev   Next  

Mechanical properties of jammed packings of frictionless spheres under an applied shear stress

Liu Hao, Tong Hua, Xu Ning
Key Laboratory of Soft Matter Chemistry of Chinese Academy of Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  By minimizing a thermodynamic-like potential, we unbiasedly sample the potential energy landscape of soft and frictionless spheres under a constant shear stress. We obtain zero-temperature jammed states under desired shear stresses and investigate their mechanical properties as a function of the shear stress. As a comparison, we also obtain the jammed states from the quasistatic-shear sampling in which the shear stress is not well-controlled. Although the yield stresses determined by both samplings show the same power-law scaling with the compression from the jamming transition point J at zero temperature and shear stress, for finite size systems the quasistatic-shear sampling leads to a lower yield stress and a higher critical volume fraction at point J. The shear modulus of the jammed solids decreases with increasing shear stress. However, the shear modulus does not decay to zero at yielding. This discontinuous change of the shear modulus implies the discontinuous nature of the unjamming transition under nonzero shear stress, which is further verified by the observation of a discontinuous jump in the pressure from the jammed solids to the shear flows. The pressure jump decreases upon decompression and approaches zero at the critical-like point J, in analogy with the well-known phase transitions under an external field. The analysis of the force networks in the jammed solids reveals that the force distribution is more sensitive to the increase of the shear stress near point J. The force network anisotropy increases with increasing shear stress. The weak particle contacts near the average force and under large shear stresses it exhibit an asymmetric angle distribution.
Keywords:  jamming      shear      phase transition      force network     
Received:  16 June 2014      Published:  15 November 2014
PACS:  61.43.-j (Disordered solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21325418), the National Basic Research Program of China (Grant No. 2012CB821500), the Chinese Academy of Sciences 100-Talent Program (Grant No. 2030020004), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2340000034).
Corresponding Authors:  Xu Ning     E-mail:

Cite this article: 

Liu Hao, Tong Hua, Xu Ning Mechanical properties of jammed packings of frictionless spheres under an applied shear stress 2014 Chin. Phys. B 23 116105

[1] Liu A J and Nagel S R 1998 Nature 396 21
[2] O'ern C S, Silbert L E, Liu A J and Nagel S R 2003 Phys. Rev. E 68 011306
[3] Xu N 2011 Front. Phys. 6 109
[4] van Hecke M 2010 J. Phys.: Condens. Matter 22 033101
[5] Andrea J L and Nagel R 2010 Annu. Rev. Condens. Matter. Phys. 1 347
[6] Ikeda A, Berthier L and Sollich P 2012 Phys. Rev. Lett. 109 018301
[7] Liu H, Xie X and Xu N 2014 Phys. Rev. Lett. 112 145502
[8] Vågverg D, Valdez-Balderas D, Moore M A, Olsson P and Teitel S 2011 Phys. Rev. E 83 030303
[9] Chaudhuri P, Bethier L and Sastry S 2010 Phys. Rev. Lett. 104 165701
[10] Silbert L E, Liu A J and Nagel S R 2005 Phys. Rev. Lett. 95 098301
[11] Wyart M, Silbert L E, Nagel S R and Witten T A 2005 Phys. Rev. E 72 051306
[12] Wyart M, Nagel S R and Witten T A 2005 Europhys. Lett. 72 486
[13] Ellenbroek W G, Somfai E, van Hecke M and van Saarloos W 2006 Phys. Rev. Lett. 97 258001
[14] Olsson P and Teitel S 2007 Phys. Rev. Lett. 99 178001
[15] Hatano T 2008 Phys. Soc. Jpn. 77 123002
[16] Drocco J A, Hastings M B, Reichhardt C J O and Reichhardt C 2005 Phys. Rev. Lett. 95 088001
[17] Ozawa M, Kuroiwa T, Ikeda A and Miyazaki K 2012 Phys. Rev. Lett. 109 205701
[18] Tighe B P,Woldhuis E, Remmers J J C, van SaarloosWand van Hecke M 2010 Phys. Rev. Lett. 105 088303
[19] Durian D J 1995 Phys. Rev. Lett. 75 4780
[20] Xu N, Vitelli V, Wyart M, Liu A J and Nagel S R 2009 Phys. Rev. Lett. 102 038001
[21] Vitelli V, Xu N, Wyart M, Liu A J and Nagel S R 2010 Phys. Rev. E 81 021301
[22] Zhao C, Tian K and Xu N 2011 Phys. Rev. Lett. 106 125503
[23] Keys A S, Abate A R, Glotzer S C and Durian D J 2007 Nat. Phys. 3 260
[24] Head D A 2009 Phys. Rev. Lett. 102 138001
[25] Heussinger C and Barrat J L 2009 Phys. Rev. Lett. 102 218303
[26] Jaeger H M, Nagel S R and Behringer R P 1996 Rev. Mod. Phys. 68 1259
[27] O'Hern C S, Langer S A, Liu A J and Nagel S R 2002 Phys. Rev. Lett. 88 075507
[28] Corwin E I, Jaeger H M and Nagel S R 2005 Nature 435 1075
[29] Mueth D M, Jaeger H M and Nagel S R 1998 Phys. Rev. E 57 3164
[30] Blair D L, Mueggenburg N W, Marshall A H, Jaeger H M and Nagel S R 2001 Phys. Rev. E 63 041304
[31] Radjai F,Wolf D E, Jean M and Moreau J J 1998 Phys. Rev. Lett. 80 61
[32] Majmudar T S and Behringer R P 2005 Nature 435 1079
[33] Radjai F, Roux S and Moreau J J 1999 Chaos 9 544
[34] Malandro D L and Lacks D J 1999 J. Chem. Phys. 110 4593
[35] Maloney C E and Lemaître A L 2006 Phys. Rev. E 74 016118
[36] Tanguy A, Leonforte F and Barrat J L 2006 Eur. Phys. J. E 20 355
[37] Heussinger C, Chaudhuri P and Barrat J L 2010 Soft Matter 6 3050
[38] Andreotti B, Barrat J L and Heussinger C 2012 Phys. Rev. Lett. 109 105901
[39] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press)
[40] Bitzek E, Koskinen P, Gähler F, MoselerMand Gumbsch P 2006 Phys. Rev. Lett. 97 170201
[41] Larson R G 1999 The Structure and Rheology of Complex Fulids (Oxford: Oxford University Press)
[42] Xu N and O'Hern C S 2006 Phys. Rev. E 73 061303
[43] Coussot P, Nguyen Q D, Huynh H T and Bonn D 2002 Phys. Rev. Lett. 88 175501
[1] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[2] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[3] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[4] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[5] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[6] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[7] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[8] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[9] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[10] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[11] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[12] Ultrasonic beam focusing characteristics of shear-vertical waves for contact-type linear phased array in solid
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星). Chin. Phys. B, 2020, 29(3): 034304.
[13] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
[14] Jamming in confined geometry: Criticality of the jamming transition and implications of structural relaxation in confined supercooled liquids
Jun Liu(柳军), Hua Tong(童华), Yunhuan Nie(聂运欢), and Ning Xu(徐宁). Chin. Phys. B, 2020, 29(12): 126302.
[15] Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport
Yan Li(李妍), Yi-Nuo Liu(刘一诺), Xia Zhang(张霞). Chin. Phys. B, 2020, 29(10): 106301.
No Suggested Reading articles found!