Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 080304    DOI: 10.1088/1674-1056/22/8/080304
GENERAL Prev   Next  

Effect of excess noise on continuous variable entanglement sudden death and Gaussian quantum discord

Su Xiao-Long
State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Abstract  A symmetric two-mode Gaussian entangled state is used to investigate the effect of excess noise on entanglement sudden death and Gaussian quantum discord with continuous variables. The results show that the excess noise in the channel can lead to entanglement sudden death of a symmetric two-mode Gaussian entangled state, while Gaussian quantum discord never vanishes. As a practical application, the security of a quantum key distribution (QKD) scheme based on a symmetric two-mode Gaussian entangled state against collective Gaussian attacks is analyzed. The calculation results show that the secret key cannot be distilled when entanglement vanishes and only quantum discord exists in such a QKD scheme.
Keywords:  continuous variable      entanglement      quantum key distribution     
Received:  10 January 2013      Published:  27 June 2013
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB923103), the National Natural Science Foundation of China (Grant Nos. 11174188 and 61121064), and the Fund from the Shanxi Scholarship Council of China (Grant No. 2012-010).
Corresponding Authors:  Su Xiao-Long     E-mail:  suxl@sxu.edu.cn

Cite this article: 

Su Xiao-Long Effect of excess noise on continuous variable entanglement sudden death and Gaussian quantum discord 2013 Chin. Phys. B 22 080304

[1] Yu T and Eberly J H 2009 Science 323 598
[2] Almeida M P, De Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H and Davidovich L 2007 Science 316 579
[3] Braunstein S L and Van Loock P 2005 Rev. Mod. Phys. 77 513
[4] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Llyod S 2012 Rev. Mod. Phys. 84 621
[5] Coelho A S, Barbosa F A S, Cassemiro K N, Villar A S, Martinelli M, and Nussemzveig P 2009 Science 326 823
[6] Barbosa F A S, Coelho A S, De Faria A J, Cassemiro K N, Villar A S, Nussemzveig P and Martinelli M 2010 Nat. Photon. 4 858
[7] Barbosa F A S, De Faria A J, Coelho A S, Cassemiro K N, Villar A S, Nussemzveig P and Martinelli M 2011 Phys. Rev. A 84 052330
[8] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[9] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
[10] Ryan C A, Emerson J, Poulin D, Negrevergne C and Laflamme R 2005 Phys. Rev. Lett. 95 250502
[11] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[12] Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503
[13] Adesso G and Datta A 2010 Phys. Rev. Lett. 105 030501
[14] Gu M, Chrzanowski H M, Assad S M, Symul T, Modi K, Ralph T C, Vedral V and Lam P K 2012 Nat. Phys. 8 671
[15] Blandino R, Genoni M G, Etesse J, Barbieri M, Paris M G A, Grangier P and Tualle-Brouri Rosa 2012 Phys. Rev. Lett. 109 180402
[16] Madsen L S, Berni A, Lassen M and Andersen U L 2012 Phys. Rev. Lett. 109 030402
[17] Chen J J, Han Z F, Zhao Y B, Gui Y Z and Guo G C 2006 Physics 35 785 (in Chinese)
[18] Zhu J, He G Q and Zeng G H 2007 Chin. Phys. 16 1364
[19] Namiki R and Hirano T 2004 Phys. Rev. Lett. 92 117901
[20] Renner R and Cirac J I 2009 Phys. Rev. Lett. 102 110504
[21] Leverrier A and Grangier P 2009 Phys. Rev. Lett. 102 180504
[22] Su X L, Jing J T, Pan Q and Xie C D 2006 Phys. Rev. A 74 062305
[23] Pirandola S, Mancini S, Lloyd S and Braunstein S L 2008 Nat. Phys. 4 726
[24] Weedbrook C, Pirandola S and Ralph T C 2012 Phys. Rev. A 86 022318
[25] Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
[26] Lorenz S, Korolkova N and Leuchs G 2004 Appl. Phys. B 79 273
[27] Lance A M, Symul T, Sharma V, Weedbrook C, Ralph T C and Lam P K 2005 Phys. Rev. Lett. 95 180503
[28] Symul T, Alton D J, Assad S M, Lance A M, Weedbrook C, Ralph T C and Lam P K 2007 Phys. Rev. A 76 030303
[29] Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W and Grangier P 2007 Phys. Rev. A 76 042305
[30] Qi B, Huang L L, Qian L and Lo H K 2007 Phys. Rev. A 76 052323
[31] Shen Y, Zou H X, Tian L, Chen P X and Yuan J M 2010 Phys. Rev. A 82 022317
[32] Su X L, Wang W Z, Wang Y, Jia X J, Xie C D and Peng K C 2009 Europhys. Lett. 87 20005
[33] Eberle Tobias, Händchen Vitus, Duhme J, Franz T, Werner R F and Schnabel R arXiv: 1110.3977v1 [quant-ph]
[34] Madsen L S, Usenko V C, Lassen M, Filip R and Andersen U L 2012 Nature Commun. 3 1083
[35] Curty M, Lewenstein M and Lütkenhaus N 2004 Phys. Rev. Lett. 92 217903
[36] Serafini A, Illuminati F and De Siena S 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L21
[37] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318
[38] Simon R 2000 Phys. Rev. Lett. 84 2726
[39] Werner R F and Wolf M M 2001 Phys. Rev. Lett. 86 3658
[40] Silberhorn Ch, Ralph T C, Lütkenhaus N and Leuchs G 2002 Phys. Rev. Lett. 89 167901
[41] Grosshans F, Cerf N J, Wenger J, Tualle-Brouri R and Grangier P 2003 Quantum Inf. Comput. 3 535
[42] Navascués M, Grosshans G and Acín A 2006 Phys. Rev. Lett. 97 190502
[43] García-Patrón R and Cerf N J 2006 Phys. Rev. Lett. 97 190503
[44] Pirandola S, Braunstein S L and Lloyd S 2008 Phys. Rev. Lett. 101 200504
[45] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[46] Holevo A S, Sohma M and Hirota O 1999 Phys. Rev. A 59 1820
[47] Grangier P, Levenson J A and Poizat J P 1998 Nature 396 537
[48] Eisert J, Scheel S and Plenio M B 2002 Phys. Rev. Lett. 89 137903
[49] Fiurášek J 2002 Phys. Rev. Lett. 89 137904
[1] Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness
Zhi-Jin Ke(柯芝锦), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Yu Meng(孟雨), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Ya Xiao(肖芽), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(8): 080301.
[2] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[3] One-decoy state reference-frame-independent quantum key distribution
Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴). Chin. Phys. B, 2020, 29(7): 070303.
[4] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[5] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[6] Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator
Qingxia Mu(穆青霞), Peiying Lin(林佩英). Chin. Phys. B, 2020, 29(6): 060304.
[7] Quantum entanglement dynamics based oncomposite quantum collision model
Xiao-Ming Li(李晓明), Yong-Xu Chen(陈勇旭), Yun-Jie Xia(夏云杰), Qi Zhang(张琦), Zhong-Xiao Man(满忠晓). Chin. Phys. B, 2020, 29(6): 060302.
[8] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[9] Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states
Yu-Qian He(贺宇千), Yun Mao(毛云), Hai Zhong(钟海), Duang Huang(黄端), Ying Guo(郭迎). Chin. Phys. B, 2020, 29(5): 050309.
[10] Reconciliation for CV-QKD using globally-coupled LDPC codes
Jin-Jing Shi(石金晶), Bo-Peng Li(李伯鹏), Duan Huang(黄端). Chin. Phys. B, 2020, 29(4): 040301.
[11] Reference-frame-independent quantum key distribution with an untrusted source
Jia-Ji Li(李家骥), Yang Wang(汪洋), Hong-Wei Li(李宏伟), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(3): 030303.
[12] Performance analysis of continuous-variable measurement-device-independent quantum key distribution under diverse weather conditions
Shu-Jing Zhang(张淑静), Chen Xiao(肖晨), Chun Zhou(周淳), Xiang Wang(汪翔), Jian-Shu Yao(要建姝), Hai-Long Zhang(张海龙), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(2): 020301.
[13] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[14] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[15] Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization
Jisuo Wang(王继锁)1,†, Xiangguo Meng(孟祥国)2,‡, and Xiaoyan Zhang(张晓燕)1,2. Chin. Phys. B, 2020, 29(12): 124213.
No Suggested Reading articles found!