Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 080304    DOI: 10.1088/1674-1056/22/8/080304
GENERAL Prev   Next  

Effect of excess noise on continuous variable entanglement sudden death and Gaussian quantum discord

Su Xiao-Long (苏晓龙)
State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Abstract  A symmetric two-mode Gaussian entangled state is used to investigate the effect of excess noise on entanglement sudden death and Gaussian quantum discord with continuous variables. The results show that the excess noise in the channel can lead to entanglement sudden death of a symmetric two-mode Gaussian entangled state, while Gaussian quantum discord never vanishes. As a practical application, the security of a quantum key distribution (QKD) scheme based on a symmetric two-mode Gaussian entangled state against collective Gaussian attacks is analyzed. The calculation results show that the secret key cannot be distilled when entanglement vanishes and only quantum discord exists in such a QKD scheme.
Keywords:  continuous variable      entanglement      quantum key distribution  
Received:  10 January 2013      Revised:  06 March 2013      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB923103), the National Natural Science Foundation of China (Grant Nos. 11174188 and 61121064), and the Fund from the Shanxi Scholarship Council of China (Grant No. 2012-010).
Corresponding Authors:  Su Xiao-Long     E-mail:  suxl@sxu.edu.cn

Cite this article: 

Su Xiao-Long (苏晓龙) Effect of excess noise on continuous variable entanglement sudden death and Gaussian quantum discord 2013 Chin. Phys. B 22 080304

[1] Yu T and Eberly J H 2009 Science 323 598
[2] Almeida M P, De Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H and Davidovich L 2007 Science 316 579
[3] Braunstein S L and Van Loock P 2005 Rev. Mod. Phys. 77 513
[4] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Llyod S 2012 Rev. Mod. Phys. 84 621
[5] Coelho A S, Barbosa F A S, Cassemiro K N, Villar A S, Martinelli M, and Nussemzveig P 2009 Science 326 823
[6] Barbosa F A S, Coelho A S, De Faria A J, Cassemiro K N, Villar A S, Nussemzveig P and Martinelli M 2010 Nat. Photon. 4 858
[7] Barbosa F A S, De Faria A J, Coelho A S, Cassemiro K N, Villar A S, Nussemzveig P and Martinelli M 2011 Phys. Rev. A 84 052330
[8] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[9] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
[10] Ryan C A, Emerson J, Poulin D, Negrevergne C and Laflamme R 2005 Phys. Rev. Lett. 95 250502
[11] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[12] Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503
[13] Adesso G and Datta A 2010 Phys. Rev. Lett. 105 030501
[14] Gu M, Chrzanowski H M, Assad S M, Symul T, Modi K, Ralph T C, Vedral V and Lam P K 2012 Nat. Phys. 8 671
[15] Blandino R, Genoni M G, Etesse J, Barbieri M, Paris M G A, Grangier P and Tualle-Brouri Rosa 2012 Phys. Rev. Lett. 109 180402
[16] Madsen L S, Berni A, Lassen M and Andersen U L 2012 Phys. Rev. Lett. 109 030402
[17] Chen J J, Han Z F, Zhao Y B, Gui Y Z and Guo G C 2006 Physics 35 785 (in Chinese)
[18] Zhu J, He G Q and Zeng G H 2007 Chin. Phys. 16 1364
[19] Namiki R and Hirano T 2004 Phys. Rev. Lett. 92 117901
[20] Renner R and Cirac J I 2009 Phys. Rev. Lett. 102 110504
[21] Leverrier A and Grangier P 2009 Phys. Rev. Lett. 102 180504
[22] Su X L, Jing J T, Pan Q and Xie C D 2006 Phys. Rev. A 74 062305
[23] Pirandola S, Mancini S, Lloyd S and Braunstein S L 2008 Nat. Phys. 4 726
[24] Weedbrook C, Pirandola S and Ralph T C 2012 Phys. Rev. A 86 022318
[25] Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
[26] Lorenz S, Korolkova N and Leuchs G 2004 Appl. Phys. B 79 273
[27] Lance A M, Symul T, Sharma V, Weedbrook C, Ralph T C and Lam P K 2005 Phys. Rev. Lett. 95 180503
[28] Symul T, Alton D J, Assad S M, Lance A M, Weedbrook C, Ralph T C and Lam P K 2007 Phys. Rev. A 76 030303
[29] Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W and Grangier P 2007 Phys. Rev. A 76 042305
[30] Qi B, Huang L L, Qian L and Lo H K 2007 Phys. Rev. A 76 052323
[31] Shen Y, Zou H X, Tian L, Chen P X and Yuan J M 2010 Phys. Rev. A 82 022317
[32] Su X L, Wang W Z, Wang Y, Jia X J, Xie C D and Peng K C 2009 Europhys. Lett. 87 20005
[33] Eberle Tobias, Händchen Vitus, Duhme J, Franz T, Werner R F and Schnabel R arXiv: 1110.3977v1 [quant-ph]
[34] Madsen L S, Usenko V C, Lassen M, Filip R and Andersen U L 2012 Nature Commun. 3 1083
[35] Curty M, Lewenstein M and Lütkenhaus N 2004 Phys. Rev. Lett. 92 217903
[36] Serafini A, Illuminati F and De Siena S 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L21
[37] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318
[38] Simon R 2000 Phys. Rev. Lett. 84 2726
[39] Werner R F and Wolf M M 2001 Phys. Rev. Lett. 86 3658
[40] Silberhorn Ch, Ralph T C, Lütkenhaus N and Leuchs G 2002 Phys. Rev. Lett. 89 167901
[41] Grosshans F, Cerf N J, Wenger J, Tualle-Brouri R and Grangier P 2003 Quantum Inf. Comput. 3 535
[42] Navascués M, Grosshans G and Acín A 2006 Phys. Rev. Lett. 97 190502
[43] García-Patrón R and Cerf N J 2006 Phys. Rev. Lett. 97 190503
[44] Pirandola S, Braunstein S L and Lloyd S 2008 Phys. Rev. Lett. 101 200504
[45] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[46] Holevo A S, Sohma M and Hirota O 1999 Phys. Rev. A 59 1820
[47] Grangier P, Levenson J A and Poizat J P 1998 Nature 396 537
[48] Eisert J, Scheel S and Plenio M B 2002 Phys. Rev. Lett. 89 137903
[49] Fiurášek J 2002 Phys. Rev. Lett. 89 137904
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[3] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[4] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[5] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[6] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[7] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[8] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[9] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[10] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[11] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[12] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[13] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[14] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[15] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
No Suggested Reading articles found!