Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 080305    DOI: 10.1088/1674-1056/22/8/080305
GENERAL Prev   Next  

Control of sudden transition between classical and quantum correlations of two strongly driven atoms in dissipative cavities

Mu Qing-Xia (穆青霞)
School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
Abstract  We investigate analytically the dynamics of classical and quantum correlations between two strongly driven atoms, each of which is trapped inside a dissipative cavity. It is found that there exists a finite time interval during which the quantum discord initially prepared in the X-type states is not destroyed by the decay of the cavities. The sudden transition between classical correlation and quantum discord is sensitive to the initial-state parameter, the cavity decay rate, and the cavity mode-driving field detuning. Interestingly, we show that the transition time can be prolonged significantly by increasing the degree of the detuning.
Keywords:  quantum discord      sudden transition      classical correlations  
Received:  29 November 2012      Revised:  07 February 2013      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11205056 and 11247308) and the Special Funds for the Co-construction Project of Beijing.
Corresponding Authors:  Mu Qing-Xia     E-mail:  qingxiamu@ncepu.edu.cn

Cite this article: 

Mu Qing-Xia (穆青霞) Control of sudden transition between classical and quantum correlations of two strongly driven atoms in dissipative cavities 2013 Chin. Phys. B 22 080305

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[3] Bennett C H and Divincenzo D P 2000 Nature 404 247
[4] Horodecki M, Horodecki P, Horodecki R, Oppenheim J, Sen A, Sen U and Synak-Radtke B 2005 Phys. Rev. A 71 062307
[5] Niset J and Cerf N J 2006 Phys. Rev. A 74 052103
[6] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[7] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[8] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[9] Luo S L 2008 Phys. Rev. A 77 042303
[10] Sarandy M S 2009 Phys. Rev. A 80 022108
[11] Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503
[12] Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702
[13] Han W, Zhang Y J and Xia Y J 2013 Chin. Phys. B 22 010306
[14] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
[15] Maziero J, Céleri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102
[16] Maziero J, Werlang T, Fanchini F F, Céleri L C and Serra R M 2010 Phys. Rev. A 81 022116
[17] Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
[18] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[19] Vasile R, Giorda P, Olivares S, Paris M G A and Maniscalco S 2010 Phys. Rev. A 82 012313
[20] Shan C J, Liu J B, Chen T, Liu T K, Huang Y X and Li H 2010 Acta Phys. Sin. 59 6799 (in Chinese)
[21] Qian Y and Xu J B 2012 Chin. Phys. B 21 030305
[22] Song J, Xia Y and Sun X D 2012 J. Opt. Soc. Am. B 29 268
[23] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[24] Luo D W, Lin H Q, Xu J B and Yao D X 2011 Phys. Rev. A 84 062112
[25] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nature Commun. 1 7
[26] Auccaise R, Céleri L C, Soares-Pinto D O, de Azevedo E R, Maziero J, Souza A M, Bonagamba T J, Sarthour R S, Oliveira I S and Serra R M 2011 Phys. Rev. Lett. 107 140403
[27] Peixoto de Faria J G and Nemes M C 1999 Phys. Rev. A 59 3918
[28] Bianchetti R, Filipp S, Baur M, Fink J M, Göppl M, Leek P J, Steffen L, Blais A and Wallraff A 2009 Phys. Rev. A 80 043840
[29] Robledo L, Bernien H, van Weperen I and Hanson R 2010 Phys. Rev. Lett. 105 177403
[1] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[2] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[3] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[4] Quantum discord of two-qutrit system under quantum-jump-based feedback control
Chang Wang(王畅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2019, 28(12): 120302.
[5] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[6] Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2018, 27(9): 090306.
[7] Comparative investigation of freezing phenomena for quantum coherence and correlations
Lian-Wu Yang(杨连武), Wei Han(韩伟), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(4): 040302.
[8] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[9] Geometric global quantum discord of two-qubit states
Yunlong Xiao(肖运龙), Tao Li(李陶), Shao-Ming Fei(费少明), Naihuan Jing(景乃桓), Zhi-Xi Wang(王志玺), Xianqing Li-Jost(李先清). Chin. Phys. B, 2016, 25(3): 030301.
[10] Phase effect on dynamics of quantum discord modulated by interaction between qubits
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2015, 24(9): 090303.
[11] Quantum correlation dynamics in a two-qubit Heisenberg XYZ model with decoherence
Yang Guo-Hui (杨国晖), Zhang Bing-Bing (张冰冰), Li Lei (李磊). Chin. Phys. B, 2015, 24(6): 060302.
[12] Dynamics of super-quantum discord and direct control with weak measurement in open quantum system
Ji Ying-Hua (嵇英华). Chin. Phys. B, 2015, 24(12): 120302.
[13] Characterizing the dynamics of quantum discord under phase damping with POVM measurements
Jiang Feng-Jian (蒋峰建), Ye Jian-Feng (叶剑锋), Yan Xin-Hu (闫新虎), Lü Hai-Jiang (吕海江). Chin. Phys. B, 2015, 24(10): 100304.
[14] Symmetric quantum discord for a two-qubit state
Wang Zhong-Xiao (王仲宵), Wang Bo-Bo (王波波). Chin. Phys. B, 2014, 23(7): 070305.
[15] Dynamics of quantum discord in a two-qubit system under classical noise
Guo You-Neng (郭有能), Fang Mao-Fa (方卯发), Liu Xiang (刘翔), Yang Bai-Yuan (杨百元). Chin. Phys. B, 2014, 23(3): 034204.
No Suggested Reading articles found!