Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074303    DOI: 10.1088/1674-1056/22/7/074303
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effects of size and arrangement of virtual transducer on photoacoustic tomography

Wang Shao-Hua, Tao Chao, Liu Xiao-Jun
Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093, China
Abstract  In this paper, we investigate the effects of the relative size and arrangement of the virtual transducer on the image quality in limited-view photoacoustic tomography. A virtual transducer refers to the acoustic scatterers used to reflect photoacoustic waves and improve the images reconstructed from incomplete PA signal. Size and spatial arrangement determine the performance of the virtual transducer. In this study, the scatterers utilized as virtual transducers are arranged in different manners, such as on a straight line or on an arc line. We find that virtual transducers with a big distributing angle can provide more significant image improvement than with a small distributing angle, which is similar to the true transducers. We also change the size of virtual transducer and study its influence on image quality. It is found that the bigger scatterers provide better images than the smaller ones. Especially, when the size of scatterers is reduced to the wavelength of photoacoustic wave, the image quality observably decreases, owing to the strong diffraction effect. Thus, it is suggested that the size of the acoustical scatterers should be much larger than the photoacoustic wavelength. The simulations are conducted, and the results could be helpful for the application and further study of virtual transducer theory in limited-view photoacoustic tomography.
Keywords:  photoacoustic tomography      limited-view      virtual transducer      scattering  
Received:  08 October 2012      Revised:  19 November 2012      Published:  01 June 2013
PACS:  43.35.Ud (Thermoacoustics, high temperature acoustics, photoacoustic effect)  
  43.60.Pt (Signal processing techniques for acoustic inverse problems)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 11274167, 11274171, and 11074124), and the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201208).
Corresponding Authors:  Tao Chao, Liu Xiao-Jun     E-mail:  taochao@nju.edu.cn;liuxiaojun@nju.edu.cn

Cite this article: 

Wang Shao-Hua, Tao Chao, Liu Xiao-Jun Effects of size and arrangement of virtual transducer on photoacoustic tomography 2013 Chin. Phys. B 22 074303

[1] Sun T and Diebold G J 1992 Nature 355 806
[2] Xu M H and Wang L H V 2006 Rev. Sci. Instrum. 77 041101
[3] Kong F, Chen Y C, Lloyd H O, Silverman R H, Kim H H, Cannata J M and Shung K K 2009 Appl. Phys. Lett. 94 033902
[4] Wang X D, Pang Y J, Ku G, Xie X Y, Stoica G and Wang L H V 2003 Nat. Biotechnol. 21 803
[5] Zhang H F, Maslov K, Stoica G and Wang L H V 2006 Nat. Biotechnol. 24 848
[6] Wang L H V and Hu S 2012 Science 335 1458
[7] Oladipupo S S, Hu S, Santeford A C, Yao J J, Kovalski J R, Shohet R V, Maslov K, Wang L V and Arbeit J M 2011 Blood 117 4142
[8] Xiang L Z, Xing D, Gu H M, Yang D W, Yang S H and Zeng L M 2007 Acta Phys. Sin. 56 3911 (in Chinese)
[9] Xu M H, Xu Y and Wang L H V 2003 IEEE Trans. Biomed. Eng. 50 1086
[10] Yang S H and Yin G Z 2009 Acta Phys. Sin. 58 4760 (in Chinese)
[11] Manohar S, Kharine A, van Hespen J C G, Steenbergen W and van Leeuwen T G 2005 Phys. Med. Biol. 50 2543
[12] Andreev V G, Karabutov A A and Oraevsky A A 2003 IEEE. T. Ultrason. Ferr. 50 1383
[13] Zhang H F, Maslov K, Sivaramakrishnan M, Stoica G and Wang L H V 2007 Appl. Phys. Lett. 90 053901
[14] Li M L, Oh J T, Xie X Y, Ku G, Wang W, Li C, Lungu G, Stoica G and Wang L V 2008 Proc. IEEE 96 481
[15] Li C H, Aguirre A, Gamelin J, Maurudis A, Zhu Q and Wang L V 2010 J. Biomed. Opt. 15 010509
[16] Xu M H and Wang L H V 2002 IEEE Trans. Med. Imaging 21 814
[17] Wu D, Tao C, Liu X J and Wang X D 2012 Chin. Phys. B 21 014301
[18] Tao C and Liu X J 2010 Opt. Express 18 2760
[19] Wu D, Tao C and Liu X J 2010 Acta Phys. Sin. 59 5845 (in Chinese)
[20] Xu Y, Wang L V, Ambartsoumian G and Kuchment P 2004 Med. Phys. 31 724
[21] Paltauf G, Nuster R, Haltmeier M and Burgholzer P 2007 Inverse Probl. 23 S81
[22] Wu D, Wang X, Tao C and Liu X J 2011 Appl. Phys. Lett. 99 244102
[23] Xu M H and Wang L H V 2005 Phys. Rev. E 71 016706
[24] Wu D, Tao C and Liu X J 2011 J. Appl. Phys. 109 084702
[1] Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves
F G Mitri. Chin. Phys. B, 2021, 30(2): 024302.
[2] Evidence of potential change in nonsequential double ionization
Changchun Jia(贾昌春), Pu Zhang(张朴), Hua Wen(文华), and Zhangjin Chen(陈长进). Chin. Phys. B, 2021, 30(2): 023401.
[3] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[4] Some experimental schemes to identify quantum spin liquids
Yonghao Gao(高永豪), Gang Chen(陈钢). Chin. Phys. B, 2020, 29(9): 097501.
[5] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[6] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[7] Acoustic radiation force on thin elastic shells in liquid
Run-Yang Mo(莫润阳), Jing Hu(胡静), Shi Chen(陈时), Cheng-Hui Wang(王成会). Chin. Phys. B, 2020, 29(9): 094301.
[8] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[9] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[10] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[11] Single-photon scattering controlled by an imperfect cavity
Liwei Duan(段立伟), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(7): 070301.
[12] Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band
Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟). Chin. Phys. B, 2020, 29(7): 074102.
[13] Physical properties and magnetic structure of a layered antiferromagnet PrPd0.82Bi2
Meng Yang(杨萌), Changjiang Yi(伊长江), Fengfeng Zhu(朱锋锋), Xiao Wang(王霄), Dayu Yan(闫大禹), Shanshan Miao(苗杉杉), Yixi Su(苏夷希), Youguo Shi(石友国). Chin. Phys. B, 2020, 29(6): 067502.
[14] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[15] Pulling force of acoustic-vortex beams on centered elastic spheres based on the annular transducer model
Yuzhi Li(李禹志), Qingdong Wang(王青东), Gepu Guo(郭各朴), Hongyan Chu(褚红燕), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(5): 054302.
No Suggested Reading articles found!