Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 047502    DOI: 10.1088/1674-1056/22/4/047502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Flexible tuning microwave permeability spectrum in [ferromagnet/antiferromagnet]n exchange-biasedmultilayer stack structure

Jin Li-Chuan, Zhang Huai-Wu, Tang Xiao-Li, Bai Fei-Ming, Zhong Zhi-Yong
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  NiFe/[IrMn/NiFe/IrMn]5/[NiFe/IrMn]4/NiFe structured exchange-biased multilayer films are designed and prepared by magnetron sputtering. The static and the microwave magnetic properties are systematically investigated. The results reveal that adding partially pinned ferromagnetic layer can effectively broaden the ferromagnetic resonance linewidth toward low frequency domain. Moreover, a wideband multi-peak permeability spectrum with a 3.1-GHz linewidth is obtained by overlapping the spectra of different partially pinned ferromagnetic layers and [antiferromagnet/ferromagnet/antiferromagnet]n stacks. Our results show that the linewidth of the sample can be feasibly tuned through controlling the proper exchange bias fields of different stacks. The designed multilayered thin films have potential application for a tunable wideband high frequency noise filter.
Keywords:  magnetic multilayer thin films      ferromagnetic resonance      permeability spectra      exchange bias  
Received:  09 July 2012      Revised:  28 September 2012      Published:  01 March 2013
PACS:  75.30.Et (Exchange and superexchange interactions)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
Fund: Project supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 61021061), the National Basic Research Program of China (Grant No. 2012CB933104), and the National Natural Science Foundation of China (Grant Nos. 61071028, 51171038, and 60801027).
Corresponding Authors:  Jin Li-Chuan     E-mail:  brooklynlichuanj@gmail.com

Cite this article: 

Jin Li-Chuan, Zhang Huai-Wu, Tang Xiao-Li, Bai Fei-Ming, Zhong Zhi-Yong Flexible tuning microwave permeability spectrum in [ferromagnet/antiferromagnet]n exchange-biasedmultilayer stack structure 2013 Chin. Phys. B 22 047502

[1] Phuoc N N, Xu F and Ong C K 2009 Appl. Phys. Lett. 94 092505
[2] Lu G D, Zhang H W and Tang X L 2010 Chin. Phys. Lett. 27 097501
[3] Chen X, Ma Y G and Ong C K 2008 J. Appl. Phys. 104 013921
[4] Jiang C J, Xue D S, Guo D W and Fan X L 2009 J. Appl. Phys. 106 103910
[5] Zhang L R, Lu H, Liu X, Bai J M and Wei F L 2012 Chin. Phys. B 21 037502
[6] Chai G Z, Yang Y C, Zhu J Y, Lin M, Sui W B, Guo D W, Li X L and Xue D S 2010 Appl. Phys. Lett. 96 012505
[7] Tang J, Ma B, Zhang Z Z and Jin Q Y 2010 Chin. Phys. Lett. 27 077502
[8] Lamy Y and Viala B 2006 IEEE Trans. Magn. 42 3332
[9] Phuoc N N, Lim S L, Xu F, Ma Y G and Ong C K 2008 J. Appl. Phys. 104 093708
[10] Sankaranarayanan V K, Yoon S M, Kim D Y, Kim C O and Kim C G 2004 J. Appl. Phys. 96 7428
[11] Liu Y, Chen L F, Tan C Y, Liu H J and Ong C K 2005 Rev. Sci. Instrum. 76 063911
[12] Jin L C, Zhang H W, Tang X L and Zhong Z Y 2012 Thin Solid Films 520 5756
[13] Chen J H, Tang D M, Li Y W, Zhang B S, Yang Y, Lu M and Lu H X 2010 J. Magn. Magn. Mater. 322 3109
[14] Pettiford C I, Zeltser A, Yoon S D, Harri Y G, Vittoria C and Sun N X 2006 J. Appl. Phys. 99 08C901
[15] Ge S, Yao S, Yamaguchi M, Yang X, Zuo H, Ishii T, Zhou D and Li F 2007 J. Phys. D: Appl. Phys. 40 3660
[16] Phuoc N N, Hung L T, Xu F and Ong C K 2010 J. Appl. Phys. 108 023909
[17] Yang Y, Liu L B, Tang D M, Zhang B S, Lu M and Lu H X 2010 J. Appl. Phys. 108 073902
[18] Phuoc N N and Ong C K 2011 Physica B 406 3514
[19] McCord J, Kaltofen R, Gemming T, Hühne R and Schultz L 2007 Phys. Rev. B 75 134418
[20] Phuoc N N, Hung L T and Ong C K 2010 J. Alloys Compd. 506 504
[21] Schneider M L, Kos A B and Silva T J 2005 Appl. Phys. Lett. 86 202503
[1] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[2] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[3] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[4] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[5] Improvement of high-frequency properties of Co2FeSi Heusler films by ultrathin Ru underlayer
Cuiling Wang(王翠玲), Shouheng Zhang(张守珩), Shandong Li(李山东), Honglei Du(杜洪磊), Guoxia Zhao(赵国霞), Derang Cao(曹德让). Chin. Phys. B, 2020, 29(4): 046202.
[6] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
[7] Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2019, 28(7): 077502.
[8] Spin glassy behavior and large exchange bias effect in cubic perovskite Ba0.8Sr0.2FeO3-δ
Yu-Xuan Liu(刘宇轩), Zhe-Hong Liu(刘哲宏), Xu-Bin Ye(叶旭斌), Xu-Dong Shen(申旭东), Xiao Wang(王潇), Bo-Wen Zhou(周博文), Guang-Hui Zhou(周光辉), You-Wen Long(龙有文). Chin. Phys. B, 2019, 28(6): 068104.
[9] Antiferromagnetic interlayer coupling of (111)-oriented La0.67Sr0.33MnO3/SrRuO3 superlattices
Hui Zhang(张慧), Jing Zhang(张静), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Hai-Lin Huang(黄海林), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2019, 28(3): 037501.
[10] Voltage control of ferromagnetic resonance and spin waves
Xinger Zhao(赵星儿), Zhongqiang Hu(胡忠强), Qu Yang(杨曲), Bin Peng(彭斌), Ziyao Zhou(周子尧), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 097505.
[11] Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM
Ke Pei(裴科), Wei-Xing Xia(夏卫星), Bao-Min Wang(王保敏), Xing-Cheng Wen(文兴成), Ping Sheng(盛萍), Jia-Ping Liu(刘家平), Xin-Cai Liu(刘新才), Run-Wei Li(李润伟). Chin. Phys. B, 2018, 27(4): 047502.
[12] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
[13] Magnetoresistance and exchange bias in high Mn content melt-spun Mn46Ni42Sn11Sb1 alloy ribbon
Qingxue Huang(黄庆学), Fenghua Chen(陈峰华), Mingang Zhang(张敏刚), Xiaohong Xu(许小红). Chin. Phys. B, 2016, 25(5): 057305.
[14] Size-dependent exchange bias in single phase Mn3O4 nanoparticles
Song-Wei Wang(王松伟), Xin Zhang(张鑫), Rong Yao(姚蓉), Guang-Hui Rao(饶光辉). Chin. Phys. B, 2016, 25(11): 117502.
[15] Shape-manipulated spin-wave eigenmodes of magnetic nanoelements
Zhang Guang-Fu, Li Zhi-Xiong, Wang Xi-Guang, Nie Yao-Zhuang, Guo Guang-Hua. Chin. Phys. B, 2015, 24(9): 097503.
No Suggested Reading articles found!