Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040304    DOI: 10.1088/1674-1056/22/4/040304
GENERAL Prev   Next  

Quantum discord dynamics of two qubits in the single-mode cavities

Wang Chena, Chen Qing-Hua b
a Department of Physics, Zhejiang University, Hangzhou 310027, China;
b Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract  The dynamics of the quantum discord for two identical qubits in both two independent single-mode cavities and a common single-mode cavity are discussed. For the initial Bell state with correlated spins, while the entanglement sudden death can occur, the quantum discord vanishes only at discrete moments in the independent cavities and never vanishes in the common cavity. Interestingly, quantum discord and entanglement show opposite behaviors in the common cavity, unlike in the independent cavities. For the initial Bell state with anti-correlated spins, quantum discord and entanglement behave in the same way for both independent cavities and a common cavity. It is found that the detunings always stabilize the quantum discord.
Keywords:  quantum information      cavity quantum electrodynamics      entanglement and quantum nonlocality     
Received:  05 September 2012      Published:  01 March 2013
PACS:  03.67.-a (Quantum information)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174254) and the National Basic Research Program of China (Grant Nos. 2011CBA00103 and 2009CB929104).
Corresponding Authors:  Chen Qing-Hu     E-mail:

Cite this article: 

Wang Chen, Chen Qing-Hu Quantum discord dynamics of two qubits in the single-mode cavities 2013 Chin. Phys. B 22 040304

[1] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[2] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. A 47 777
[3] Bell J S 1964 Physics 1 195
[4] Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press)
[5] Nielsen M A and Chuang I L 2000 Quantum Computational and Quantum Information (Cambridge: Cambridge University Press)
[6] Tan X H, Fang X M and Wang G Y 2007 Chin. Phys. Lett. 24 340
[7] Zhang H, Luo J, Ren T T and Sun X P 2010 Chin. Phys. Lett. 27 090303
[8] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[9] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[10] Yönac M, Yu T and Eberly J H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S621
[11] Yönac M, Yu T and Eberly J H 2007 J. Phys. B: At. Mol. Opt. Phys. 40 S45
[12] Sainz I and Björk G 2007 Phys. Rev. A 76 042313
[13] Chan S, Reid M D and Ficek Z 2009 J. Phys. B: At. Mol. Opt. Phys. 42 065507
[14] Chen Q H, Yang Y, Liu T and Wang K L 2010 Phys. Rev. A 82 052306
[15] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S and Davidovich L 2007 Science 316 579
[16] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[17] Oppenheim J, Horodecki M, Horodecki P and Horodecki R 2002 Phys. Rev. Lett. 89 180402
[18] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2011 arXiv: 1112.6238
[19] Werlang T, Souza S, Fanchini F F and Boas C J V 2009 Phys. Rev. A 80 024103
[20] Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305
[21] Hu Y H and Wang J Q 2012 Chin. Phys. B 21 014203
[22] Qian Y and Xu J B 2012 Chin. Phys. B 21 030305
[23] Xu J W and Chen Q H 2012 Chin. Phys. B 21 040302
[24] Ji Y H, Hu J J and Hu Y 2012 Chin. Phys. B 21 110304
[25] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[26] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[27] Ferraro A, Aolita L, Cavalcanti D, Cucchietti F M and Acín A 2010 Phys. Rev. A 81 052318
[28] Madhok V and Datta A 2011 Phys. Rev. A 83 032323
[29] Cavalcanti D, Aolita L, Boixo S, Modi K, Piani M and Winter A 2011 Phys. Rev. A 83 032324
[30] Madhok V and Datta A 2011 arXiv: 1107.0994
[31] Madhok V and Datta A 2012 arXiv: 1204.6042
[32] Abeyesinghe A, Devetak I, Hayden P and Winter A 2009 Proc. R. Soc. A 465 2537
[33] Gu M, Chrzanowski H M, Assad S M, Symul T, Modi K, Ralph T C, Vedral V and Lam P K 2012 Nature Phys. 8 671
[34] Maziero J, Werlang T, Fanchini F F, Céleri L C and Serra R M 2010 Phys. Rev. A 81 022116
[35] Altintas F and Eryigit R 2011 J. Phys. B: At. Mol. Opt. Phys. 44 125501
[36] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[37] Agarwal S, Rafsanjani S M H and Eberly J H 2012 arXiv: 1201.2928
[38] Sarandy M S 2009 Phys. Rev. A 80 022108
[39] Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
[40] Chen Q, Zhang C J, Yu S X, Yi X X and Oh C H 2011 Phys. Rev. A 84 042313
[41] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[42] Luo S L 2008 Phys. Rev. A 77 042303
[43] Dicke R H 1954 Phys. Rev. 93 99
[1] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[2] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[3] Influence of driving ways on measurement of relative phase in a two-atoms cavity system
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平). Chin. Phys. B, 2020, 29(4): 043702.
[4] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[5] A method to calculate effective Hamiltonians in quantum information
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2019, 28(11): 110305.
[6] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[7] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[8] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
[9] Entangled-photons generation with quantum dots
Yuan Li(李远), Fei Ding(丁飞), Oliver G Schmidt. Chin. Phys. B, 2018, 27(2): 020307.
[10] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[11] Hierarchical and probabilistic quantum information splitting of an arbitrary two-qubit state via two cluster states
Wen-Ming Guo(郭文明), Lei-Ru Qin(秦蕾茹). Chin. Phys. B, 2018, 27(11): 110302.
[12] Determining spatial structures of ion crystals by simulated annealing method
Wen-Bo Wu(武文博), Chun-Wang Wu(吴春旺), Jian Li(李剑), Bao-Quan Ou(欧保全), Yi Xie(谢艺), Wei Wu(吴伟), Ping-Xing Chen(陈平形). Chin. Phys. B, 2017, 26(8): 080303.
[13] Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system
Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2017, 26(7): 074207.
[14] Probabilistic direct counterfactual quantum communication
Sheng Zhang(张盛). Chin. Phys. B, 2017, 26(2): 020304.
[15] Experimental simulation of violation of the Wright inequality by coherent light
Feng Zhu(朱锋), Wei Zhang(张巍), Yidong Huang(黄翊东). Chin. Phys. B, 2017, 26(10): 100302.
No Suggested Reading articles found!