Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 037301    DOI: 10.1088/1674-1056/20/3/037301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Impurity-related electronic properties in quantum dots under electric and magnetic fields

Zhai Li-Xuea, Liu Jian-Juna, Zhang Hongb, Wang Xueb, Zhang Chun-Yuanb
a College of Physics Science and Information Engineering, Hebei Nornal University, Shijiazhuang, Hebei 050016, China; b College of Science, Hebei University of Engineering, Handan, Heibei 056038, China
Abstract  This paper presents a systematic study of the ground-state binding energies of a hydrogenic impurity in quantum dots subjected to external electric and magnetic fields. The quantum dot is modeled by superposing a lateral parabolic potential, a Gaussian potential and the energies are calculated via the finite-difference method within the effective-mass approximation. The variation of the binding energy with the lateral confinement, external field, position of the impurity, and quantum-size is studied in detail. All these factors lead to complicated binding energies of the donor, and the following results are found: (1) the binding energies of the donor increase with the increasing magnetic strength and lateral confinement, and reduce with the increasing electric strength and the dot size; (2) there is a maximum value of the binding energies as the impurity placed in different positions along the z direction; (3) the electric field destroys the symmetric behaviour of the donor binding energies as the position of the impurity.
Keywords:  binding energy      hydrogenic impurity      quantum dot  
Received:  22 August 2010      Revised:  19 October 2010      Published:  15 March 2011
PACS:  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  73.21.La (Quantum dots)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10674040) and the Natural Science Foundation of Hebei Province, China (Grant No. A2007000233).

Cite this article: 

Zhang Hong, Zhai Li-Xue, Wang Xue, Zhang Chun-Yuan, Liu Jian-Jun Impurity-related electronic properties in quantum dots under electric and magnetic fields 2011 Chin. Phys. B 20 037301

[1] Movilla J L and Planelles J 2005 Phys. Rev. B 71 075319
[2] Mikhailov I D, Betancur F J, Escorica R A and Sierra-Ortega J 2003 Phys. Rev. B 67 115317
[3] Li S S and Xia J B 2007 J. Appl. Phys. 101 093716
[4] Zhu J L and Chen X 1994 Phys. Rev. B 50 4497
[5] Li Y, Liu J and Kong X 2000 J. Appl. Phys. 88 2588
[6] Li H J, Sun J K and Xiao J L 2010 Chin. Phys. B 19 010314
[7] Wang X H, An X T and Liu J J 2009 Chin. Phys. B 18 749
[8] Liu Y M, Yu Z Y and Ren X M 2009 Chin. Phys. B 18 0009
[9] Zhang H, Liu L and Liu J J 2007 Acta Phys. Sin. 57 487 (in Chinese)
[10] Oliveira L E, Porras-Montenegro N and Latg'e A 1993 Phys. Rev. B 47 13864
[11] Li S S and Xia J B 2006 J. Appl. Phys. 100 083714
[12] Li G, Branis S V and Bajaj K K 1990 Phys. Rev. B 47 15735
[13] Xiao Z G, Zhu J Q and He F G 2006 J. Appl. Phys. 79 9181
[14] Brozak G, de Andrada e Silva E A, Sham L J, DeRosa F, Miceli P, Schwarz S A, Harbison J P, Florez L T and Allen Jr S J 1997 Phys. Rev. Lett. 64 471
[15] An X T and Liu J J 2006 J. Appl. Phys. 99 123713
[16] Ferreyra J M, Bosshard P and Proetto C R 1997 Phys. Rev. B 55 13682
[17] Brum J A, Priester C and Allan G 1985 Phys. Rev. B 32 2378
[18] L'opez-Gondar J, d'Albuquerque e Castro J and Oliveira L E 1990 Phys. Rev. B 42 7069
[19] Mendoza C I, Vazquez G J, del Castillo-Mussot M and Spector H 2005 Phys. Rev. B 71 075330
[20] Bednarek S, Szafran B, Chwiej T and Adamowski J 2003 Phys. Rev. B 68 045328
[21] Szafran B, Bednarek S and Adamowski J 2001 Phys. Rev. B 64 125301 endfootnotesize
[1] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[2] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[3] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[4] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[5] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[6] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[7] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[8] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[9] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
[10] Zero-energy modes in serially coupled double quantum dots
Fu-Li Sun(孙复莉), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华). Chin. Phys. B, 2020, 29(6): 067302.
[11] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[12] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[13] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[14] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[15] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
No Suggested Reading articles found!