Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 037302    DOI: 10.1088/1674-1056/20/3/037302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The surface plasmon polariton dispersion relations in a nonlinear-metal-nonlinear dielectric structure of arbitrary nonlinearity

Liu Bing-Can(刘炳灿)a)b)†, Yu Li(于丽) a), and Lu Zhi-Xin(逯志欣)a)
a School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; b Department of Fundamental Courses, Academy of Armored Force Engineering, Beijing 100072, China
Abstract  The analytic surface plasmon polaritons (SPPs) dispersion relation is studied in a system consisting of a thin metallic film bounded by two sides media of nonlinear dielectric of arbitrary nonlinearity is studied by applying a generalised first integral approach. We consider both asymmetric and symmetric structures. Especially, in the symmetric system, two possible modes can exist: the odd mode and the even mode. The dispersion relations of the two modes are obtained. Due to the nonlinear dielectric, the magnitude of the electric field at the interface appears and alters the dispersion relations. The changes in SPPs dispersion relations depending on film thicknesses and nonlinearity are studied.
Keywords:  surface plasmon polariton      nonlinear      dispersion relation      planar waveguide  
Received:  28 October 2010      Revised:  23 November 2010      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  52.40.Db (Electromagnetic (nonlaser) radiation interactions with plasma)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB923202).

Cite this article: 

Liu Bing-Can(刘炳灿), Yu Li(于丽), and Lu Zhi-Xin(逯志欣) The surface plasmon polariton dispersion relations in a nonlinear-metal-nonlinear dielectric structure of arbitrary nonlinearity 2011 Chin. Phys. B 20 037302

[1] Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer)
[2] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)
[3] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[4] Zayats A V and Smolyaninov I I 2005 Phys Rep 408 131
[5] Yang P F, Gu Y and Gong Q H 2008 Chin. Phys. B 17 3880
[6] Tang L, Kocabas S E, Latif S, Okyay A K, Ly-Gagnon D, Saraswat K C and Miller D A B 2008 Nat. Photonics 2 226
[7] Xue W R, Guo Y N and Zhang W M 2009 Chin. Phys. B 18 2529
[8] Barnes W L, Dereux A and Ebbesen T W 2003 Nat. 424 824
[9] Ozbay E 2006 Science 311 189
[10] Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J and Ebbesen T W 2006 Nat. 440 508
[11] Ritchie R H 1957 Phys. Rev. 106 874
[12] Economou E N 1969 Phys. Rev. 182 539
[13] Porto J A, Martin-Moreno L and Garcia-Vidal F J 2004 Phys. Rev. B 70 081402(R)
[14] Wurtz G A and Zayats A V 2008 Laser & Photon Rev. 3 125
[15] Wurtz G A, Pollar R and Zayats A V 2006 Phys. Rev. Lett. 97 057402
[16] Min C J, Wang P and Jiao X J 2007 Opt. Express 15 12368
[17] Min C J, Wang P, Chen C C, Deng Y, Lu Y H, Ming H, Ning T Y, Zhou Y L and Yang G Z 2008 Opt. Lett. 33 869
[18] Liaw J W and Wu P T 2008 Opt. Express 16 4945
[19] Davoyan A R, Shadrivov I V and Kivshar Y S 2008 Opt. Express 16 21209
[20] Mihalache D, Stegeman G I, Seaton C T, Wright E M, Zanoni R, Boardman A D and Twardowski T 1987 Opt. Lett. 12 187
[21] Huang J H, Chang R, Leung P T and Tsai D P 2009 Opt. Commun. 282 1412
[22] Yin H P, Xu C and Hui P M 2009 Appl. Phys. Lett. 94 221102
[23] Liu B C, Yu L, Lu Z X and Zhang K 2010 Chin. Phys. B 19 097303 endfootnotesize
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[3] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[4] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[5] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[6] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[7] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[8] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[9] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[10] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[11] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[12] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[13] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[14] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[15] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
No Suggested Reading articles found!