Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 106202    DOI: 10.1088/1674-1056/20/10/106202
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of nanocomposite structure on the thermoelectric properties of 0.7-at% Bi-doped Mg2Si nanocomposite

Yang Mei-Juna, Shen Qiangb, Zhang Lian-Mengb
a Centre for Materials Research and Analysis, Wuhan University of Technology, Wuhan 430070, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; b State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Abstract  Nanocomposites offer a promising approach to the incorporation of nanostructured constituents into bulk thermoelectric materials. The 0.7-at% Bi-doped Mg2Si nanocomposites are prepared by spark plasma sintering of the mixture of nanoscale and microsized 0.7-at% Bi-doped Mg2Si powders. Microstructure analysis shows that the bulk material is composed of nano- and micrograins. Although the nanograin hinders electrical conduction, the nanocomposite structure is more helpful to reduce thermal conductivity and increase the Seebeck coefficient, hence improving thermoelectric performance. A dimensionless figure of merit of 0.8 is obtained for the 0.7-at% Bi-doped Mg2Si nanocomposite with 50-wt % nanopowder, which is about twice larger than that of the sample without nanopowder.
Keywords:  thermoelectric effects      intermetallic compounds      nanostructures      semiconductors  
Received:  06 December 2010      Revised:  10 June 2011      Published:  15 October 2011
PACS:  62.23.Pq (Composites (nanosystems embedded in a larger structure))  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2007CB607501) and the Fundamental Research Funds for the Central Universities.

Cite this article: 

Yang Mei-Jun, Shen Qiang, Zhang Lian-Meng Effect of nanocomposite structure on the thermoelectric properties of 0.7-at% Bi-doped Mg2Si nanocomposite 2011 Chin. Phys. B 20 106202

[1] Junichi T and Hiroyasu K 2007 Intermetallics 15 1202
[2] Rong R B, Aizawa T and Sun J Q 2007 Mater. Sci. Eng. B 136 111
[3] Ratai E and Augustine M P 2003 J. Phys. Chem. B 107 12573
[4] Morris R G, Redin D and Danielson G C 1958 Phys. Rev. 109 1909
[5] Kajikawa T, N Kimura and Yokoyama T 2003 Proceedings ICT' 03 August 17-21 2003 Palais des Congrks La Grande Motte, France p. 305
[6] Aizawa T and Song R 2006 Intermetallics 14 382
[7] Fedorov M I, Zaitsev V K and Vedernikov M V 2006 Proceedings ICT' 06 August 6-10 2006 Vienna, Austria p. 111
[8] Yu B L, Qi Q, Tang X F and Zhang Q J 2005 Acta Phys. Sin. 54 5763 (in Chinese)
[9] Tang X F, Chen L D and Goto T 2000 Acta Phys. Sin. 49 2437 (in Chinese)
[10] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K and Kanatzidis M G 2004 Science 303 818
[11] Zhao X B, Ji X H, Zhang Y H, Zhu T J, Tu J P and Zhang X B 2005 Appl. Phys. Lett. 86 062111
[12] Martin J, Nolas G S, Zhang W and Chen L 2007 Appl. Phys. Lett. 90 222112
[13] Yang R G and Chen G 2004 Phys. Rev. B 69 195316
[14] Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z, Fleurial J and Gogna P 2007 Adv. Mater. (Weinheim, Ger.) 19 1043
[15] Wang L and Qin X Y 2003 Scripta Materialia 49 243
[16] Riffel M and Schilz J 1995 Scripta Metallurgica et Materialia 32 1951
[17] Wang L and Qin X Y 2007 Mater. Sci. Eng. A 459 216
[18] Lee C H, Lee S H, Chun S Y and Lee S J 2006 J. Nanosci. Nanotechnol. 6 3429
[19] Szczech J R and Jin S 2008 J. Solid State Chem. 181 1565
[20] Zhang Q, He J, Zhu T J, Zhang S N, Zhao X B and Tritt T M 2008 Appl. Phys. Lett. 93 102109
[21] Huang J W 2006 MDI Jade Users Handbook (Changsha: Central South University Press) p. 33 (in Chinese)
[22] Akasaka M, Iida T, Matssumoto A and Yamanaka K 2008 J. Appl. Phys. 104 013703
[23] LaBotz R J, Mason D R and O'Kane D F 1963 J. Electrochem. Soc. 110 127
[24] Noda Y, Kon H, Furukawa Y and Otsuka N 1992 Mater. Trans. JIM 33 851
[25] Liu E K, Zhu B S and Luo J S 1989 Semiconducting Materials (Beijing: National Defence Industry Press) p. 497 (in Chinese)
[26] Kishimoto K and Koyanagi T 2002 J. Appl. Phys. 92 2544
[27] Moizhes B Ya and Nemchinsky V 1992 Proceedings ICT' 92 October 7-9 1992 Arlington, Texas, USA p. 232
[28] Tani J and Kido H 2005 Physica B 364 220
[29] Goldsmid H J 1998 Electronic Refrigeration (Lodon: Pion) Vol. 2 p. 36
[30] Callaway 1959 J. Phys. Rev. 57 1046
[31] Nan C W and Birringer R 1998 Phys. Rev. B 57 8264
[32] Bhandari C M 1995 CRC Handbook of Thermoelectric ed. Rowe D M (New York: CRC Press) p. 57
[33] Deng S K, Tang X F and Zhang Q J 2007 Acta Phys. Sin. 56 4986 (in Chinese)
[34] Morelli D T and Caillat T 1995 Phys. Rev. B 51 9622
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[3] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[4] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[5] Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning
Zhen Zhu(朱震), Baojuan Dong(董宝娟), Huaihong Guo(郭怀红), Teng Yang(杨腾), Zhidong Zhang(张志东). Chin. Phys. B, 2020, 29(4): 046101.
[6] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[7] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[8] Broadband visible light absorber based on ultrathin semiconductor nanostructures
Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英). Chin. Phys. B, 2020, 29(1): 014201.
[9] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[10] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[11] First-principles study of the band gap tuning and doping control in CdSexTe1-x alloy for high efficiency solar cell
Jingxiu Yang(杨竞秀), Su-Huai Wei(魏苏淮). Chin. Phys. B, 2019, 28(8): 086106.
[12] Lorentz transmission electron microscopy for magnetic skyrmions imaging
Jin Tang(汤进), Lingyao Kong(孔令尧), Weiwei Wang(王伟伟), Haifeng Du(杜海峰), Mingliang Tian(田明亮). Chin. Phys. B, 2019, 28(8): 087503.
[13] Polarized red, green, and blue light emitting diodes fabricated with identical device configuration using rubbed PEDOT:PSS as alignment layer
Haoran Zhang(张皓然), Qi Zhang(张琪), Qian Zhang(张茜), Huizhi Sun(孙汇智), Gang Hai(海港), Jing Tong(仝静), Haowen Xu(徐浩文), Ruidong Xia(夏瑞东). Chin. Phys. B, 2019, 28(7): 078108.
[14] Unidirectional plasmonic Bragg reflector based on longitudinally asymmetric nanostructures
Mingsong Chen(陈名松), Lulu Pan(潘璐璐), Yuanfu Lu(鲁远甫), Guangyuan Li(李光元). Chin. Phys. B, 2019, 28(7): 074208.
[15] Multiple Fano resonances in nanorod and nanoring hybrid nanostructures
Xijun Wu(吴希军), Ceng Dou(窦层), Wei Xu(徐伟), Guangbiao Zhang(张广彪), Ruiling Tian(田瑞玲), Hailong Liu(刘海龙). Chin. Phys. B, 2019, 28(1): 014204.
No Suggested Reading articles found!