Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 100308    DOI: 10.1088/1674-1056/20/10/100308
GENERAL Prev   Next  

Using a quantum dot system to realize perfect state transfer

Li Ji(李季), Wu Shi-Hai(吴世海), Zhang Wen-Wen(张雯雯), and Xi Xiao-Qiang(惠小强)
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710061, China
Abstract  There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Lett. 65 297] where a quantum dot system is used to realize quantum communication. To overcome these disadvantages, we propose a protocol that uses a quantum dot array to construct a four-qubit spin chain to realize perfect quantum state transfer (PQST). First, we calculate the interaction relation for PQST in the spin chain. Second, we review the interaction between the quantum dots in the Heitler-London approach. Third, we present a detailed program for designing the proper parameters of a quantum dot array to realize PQST.
Keywords:  quantum communication      spin chain      quantum dot  
Received:  27 January 2011      Revised:  14 May 2011      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  73.63.Kv (Quantum dots)  
Fund: Project supported by the Natural Science Foundation of Shaanxi Province of China (Grant No. 2009JQ8006).

Cite this article: 

Li Ji(李季), Wu Shi-Hai(吴世海), Zhang Wen-Wen(张雯雯), and Xi Xiao-Qiang(惠小强) Using a quantum dot system to realize perfect state transfer 2011 Chin. Phys. B 20 100308

[1] Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Lett. 65 297
[2] Petrosyan D and Lambropoulos P 2006 Opt. Commun. 264 419
[3] Bose S 2003 Phys. Rev. Lett. 91 207901
[4] Li Y, Shi T, Chen B, Song Z and Sun C P 2005 Phys. Rev. A 71 022301
[5] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
[6] Osborne T J and Linden N 2004 Phys. Rev. A 69 052315
[7] Kostak V, Nikolopoulos G M and Jex I 2007 Phys. Rev. A 75 042319
[8] Xi X Q, Gong J B, Zhang T, Yue R H and Liu W M 2008 Eur. Phys. J. D 50 193
[9] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[10] Bayer M, Hawrylak P, Hinzer K, Fafard S, Korkusinski M, Wasilewski Z R, Stern O and Forchel A 2001 Science 291 451
[11] Santori C, Tamarat P, Neumann P, Wrachtrup J, Fattal D, Beausoleil R G, Rabeau J, Olivero P, Greentree A D, Prawer S, Jelezko F and Hemmer P 2006 Phys. Rev. Lett. 97 247401
[12] Neumann P, Kolesov R, Naydenov B, Beck J, Rempp F, Steiner M, Jacques V, Balasubramanian G, Markham M L, Twitchen D J, Pezzagna S, Meijer J, Twamley J, Jelezko F and Wrachtrup J 2010 Nature Phys. 6 249
[13] Burkard G and Loss D 1999 Phys. Rev. B 59 2070
[14] Amasha S, MacLean K, Radu Iuliana P, Zumbühl D M, Kastner M A, Hanson M P and Gossard A C 2008 Phys. Rev. Lett. 100 046803
[15] Koppens F H L, Buizert C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, Kouwenhoven L P and Vandersypen L M K 2005 Nature 442 766
[16] Nowack K C, Koppens F H L, Nazarov Y V and Vandersypen L M K 2007 Science 318 1430
[17] Mikkelsen M H, Berezovsky J, Stoltz N G, Coldren L A and Awschalom D D 2007 Nature Phys. 3 770
[18] Press D, Ladd T D, Zhang B Y and Yamamoto Y 2008 Nature 456 218
[19] Elzerman J M, Hanson R, Willems van Beveren L H, Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004 Nature 430 431
[20] Hanson R, Willems van Beveren L H, Vink I T, Elzerman J M, Naber W J M, Koppens F H L, Kouwenhoven L P and Vandersypen L M K 2005 Phys. Rev. Lett. 94 196802
[21] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
[22] Sanderson K 2009 Nature 459 760
[23] Hanson R and Awschalom David D 2008 Nature 453 1043
[24] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2008 Rev. Mod. Phys. 79 1217
[25] Mattis D C 1965 The Theory of Magnetism (New York: Harper and Row)
[26] Bennett C H, DiVincenzo D P, Bacon D, Burkard G and Whaley K B 2000 Nature 408 339
[27] Bennett C H, Brassard G, Cr'epeau C, Jozsa R, Peres A and Wootters K 1993 Phys. Rev. Lett. 70 1895
[28] Herring C 1962 Rev. Mod. Phys. 34 4
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
Jia-Sheng Dong(董家生), Pengcheng Lu(路鹏程), Pei Sun(孙佩), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Kun Hao(郝昆), and Wen-Li Yang(杨文力). Chin. Phys. B, 2023, 32(1): 017501.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[11] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[12] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[13] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[14] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[15] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
No Suggested Reading articles found!