Please wait a minute...
Chin. Phys., 2006, Vol. 15(8): 1690-1694    DOI: 10.1088/1009-1963/15/8/009
GENERAL Prev   Next  

A quantum encryption scheme using d-level systems

Zhu Fu-Chena, Gao Feib, Wen Qiao-Yanb, Guo Fen-Zhuoc
a National Laboratory for Modern Communications, P.O. Box 810, Chengdu 610041, China; b School of Science, Beijing University of Posts and Telecommunications,Beijing 100876, China; c School of Science, Beijing University of Posts and Telecommunications,Beijing 100876, China;State Key Laboratory of Integrated Services Network, Xidian University,Xi'an 710071, China
Abstract  Using the generalized Bell states and quantum gates, we introduce a quantum encryption scheme of d-level states (qudits). The scheme can detect and correct arbitrary transmission errors using only local operations and classical communications between the communicators. In addition, the entanglement key used to encrypt can be recycled. The protocol is informationally secure, because the output state is a totally mixed one for every input state \rho .
Keywords:  quantum cryptography      quantum information      d-level      quantum encryption  
Received:  20 May 2005      Revised:  02 March 2006      Published:  20 August 2006
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Hk (Quantum communication)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 60373059), the Special Research Fund for the Doctoral Program of Higher Education of China (Grant No 20040013007), the Major Research plan of the National Natural Science Foundation of China(Grant No 90604023), the National Laboratory for Modern Communications Science Foundation of China, the National Key Laboratory on Theory and Chief Technology of Integrated Services Networks (ISN) Open Foundation, and the Graduate Students Innovation Foundation of Beijing University of Posts and Telecommunications.

Cite this article: 

Zhu Fu-Chen, Gao Fei, Wen Qiao-Yan, Guo Fen-Zhuo A quantum encryption scheme using d-level systems 2006 Chin. Phys. 15 1690

[1] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[2] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[3] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[4] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[5] A method to calculate effective Hamiltonians in quantum information
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2019, 28(11): 110305.
[6] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[7] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
[8] Entangled-photons generation with quantum dots
Yuan Li(李远), Fei Ding(丁飞), Oliver G Schmidt. Chin. Phys. B, 2018, 27(2): 020307.
[9] Hierarchical and probabilistic quantum information splitting of an arbitrary two-qubit state via two cluster states
Wen-Ming Guo(郭文明), Lei-Ru Qin(秦蕾茹). Chin. Phys. B, 2018, 27(11): 110302.
[10] Coherent attacks on a practical quantum oblivious transfer protocol
Guang-Ping He(何广平). Chin. Phys. B, 2018, 27(10): 100308.
[11] Determining spatial structures of ion crystals by simulated annealing method
Wen-Bo Wu(武文博), Chun-Wang Wu(吴春旺), Jian Li(李剑), Bao-Quan Ou(欧保全), Yi Xie(谢艺), Wei Wu(吴伟), Ping-Xing Chen(陈平形). Chin. Phys. B, 2017, 26(8): 080303.
[12] Two-step quantum secure direct communication scheme with frequency coding
Xue-Liang Zhao(赵学亮), Jun-Lin Li(李俊林), Peng-Hao Niu(牛鹏皓), Hong-Yang Ma(马鸿洋), Dong Ruan(阮东). Chin. Phys. B, 2017, 26(3): 030302.
[13] Probabilistic direct counterfactual quantum communication
Sheng Zhang(张盛). Chin. Phys. B, 2017, 26(2): 020304.
[14] Experimental simulation of violation of the Wright inequality by coherent light
Feng Zhu(朱锋), Wei Zhang(张巍), Yidong Huang(黄翊东). Chin. Phys. B, 2017, 26(10): 100302.
[15] Speeding up transmissions of unknown quantum information along Ising-type quantum channels
W J Guo(郭伟杰), L F Wei(韦联福). Chin. Phys. B, 2017, 26(1): 010303.
No Suggested Reading articles found!