|
|
Asymmetrical plasmon reflections in tapered graphene ribbons with wrinkle edges |
Cui Yang(杨翠)1,2, Runkun Chen(陈闰堃)1,2, Yuping Jia(贾玉萍)1,2,4, Liwei Guo(郭丽伟)1,2, Jianing Chen(陈佳宁)1,2,3 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China;
4 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
|
|
Abstract Asymmetrical graphene plasmon reflection patterns are found in infrared near-field images of tapered graphene ribbons epitaxially grown on silicon carbon substrates. Comparing experimental data with numerical simulations, the asymmetry of these patterns is attributed to reflection of plasmons by wrinkled edges naturally grown in the graphene. These graphene wrinkles are additional plasmon reflectors with varying optical conductivity, which act as nanometer scale plasmonic modulators and thus have potential applications in photoelectric information detectors, transmitters, and modulators.
|
Received: 07 April 2017
Revised: 18 April 2017
Accepted manuscript online:
|
PACS:
|
42.79.Pw
|
(Imaging detectors and sensors)
|
|
42.25.Gy
|
(Edge and boundary effects; reflection and refraction)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
73.25.+i
|
(Surface conductivity and carrier phenomena)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2016YFA0203500),the National Natural Science Foundation of China (Grant Nos.11474350 and 51472265),and State Key Laboratory of Optoelectronic Materials and Technologies (Sun Yat-Sen University),China. |
Corresponding Authors:
Liwei Guo, Jianing Chen
E-mail: lwguo@iphy.ac.cn;jnchen@iphy.ac.cn
|
Cite this article:
Cui Yang(杨翠), Runkun Chen(陈闰堃), Yuping Jia(贾玉萍), Liwei Guo(郭丽伟), Jianing Chen(陈佳宁) Asymmetrical plasmon reflections in tapered graphene ribbons with wrinkle edges 2017 Chin. Phys. B 26 074220
|
[1] |
Avouris P 2010 Nano Lett. 10 4285
|
[2] |
García de Abajo F J 2014 ACS Photon. 1 135
|
[3] |
Yang X X, Kong X T and Dai Q 2015 Acta. Phys. Sin. 64 106801 (in Chinese)
|
[4] |
Politano A and Chiarello G 2014 Nanoscale 6 10927
|
[5] |
Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077
|
[6] |
Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y and Loh K P 2011 Nat. Photon. 5 411
|
[7] |
Jia Y, Guo L, Lu W, Guo Y, Lin J, Zhu K, Chen L, Huang Q, Huang J, Li Z and Chen X 2014 Sci. China Phys. Mech. 56 2386
|
[8] |
Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, de Abajo F J, Nordlander P, Zhu X and Halas N J 2014 Nano Lett. 14 299
|
[9] |
Chen J, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Garcia de Abajo F J, Hillenbrand R and Koppens F H 2012 Nature 487 77
|
[10] |
Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F and Basov D N 2012 Nature 487 82
|
[11] |
Chen J, Nesterov M L, Nikitin A Y, Thongrattanasiri S, Alonso-Gonzalez P, Slipchenko T M, Speck F, Ostler M, Seyller T, Crassee I, Koppens F H, Martin-Moreno L, Garcia de Abajo F J, Kuzmenko A B and Hillenbrand R 2013 Nano Lett. 13 6210
|
[12] |
Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M K, McLeod A S, Dominguez G, Thiemens M, Castro Neto A H, Keilmann F, Zettl A, Hillenbrand R, Fogler M M and Basov D N 2013 Nat. Nanotechnol. 8 821
|
[13] |
Fei Z, Goldflam M D, Wu J S, Dai S, Wagner M, McLeod A S, Liu M K, Post K W, Zhu S, Janssen G C, Fogler M M and Basov D N 2015 Nano Lett. 15 8271
|
[14] |
Nikitin A Y, Alonso-González P, Vélez S, Mastel S, Centeno A, Pesquera A, Zurutuza A, Casanova F, Hueso L E, Koppens H L and Hillenbrand R 2016 Nat. Photon. 10 239
|
[15] |
Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan P M, Nordlander P, Halas N J and Garcia de Abajo F J 2013 ACS Nano 7 2388
|
[16] |
Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26
|
[17] |
Garcia-Pomar J L, Nikitin A Y and Martin-Moreno L 2013 ACS Nano 7 4988
|
[18] |
Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I and Novoselov K S 2007 Nat. Mater. 6 652
|
[19] |
Jia Y, Guo L, Lin J, Yang J and Chen X 2017 Carbon 114 585
|
[20] |
Jia Y P, Guo L W, Li Z L, Huang J, Lu W, Chen H X and Chen X L 2016 Adv. Electron. Mater. 2 1500255
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|