|
|
|
Exotic superconductivity in new topological kagome metal CsTi3Bi5 |
| Jiali Liu(刘家利)1,2,†, Zhen Zhao(赵振)1,2,†, Hongqin Xiao(肖洪钦)1,2,†, Yuhang Zhang(张宇航)1,2, Zouyouwei Lu(鲁邹有为)1,2, Jihu Lu(卢佶虎)1,2, Feng Wu(吴凤)1,3, Chengjie Xu(徐诚杰)1,2, Hua Zhang(张华)1,2, Hui Chen(陈辉)1,2,‡, Haitao Yang(杨海涛)1,2,§, Ziyi Liu(刘子儀)1,2,¶, Xiaoli Dong(董晓莉)1,2,4, and Hongjun Gao(高鸿钧)1,2,# |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing 100081, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
|
|
Abstract We present a systematic investigation of the superconductivity in high-quality CsTi$_{3}$Bi$_{5}$ single crystals by combining bulk property characterization and local-probe spectroscopy. Two successive superconducting transitions are observed in this newly discovered kagome material. In the first stage, the diamagnetic response strengthens significantly from $T_{\rm c} \sim 4.9 $ K to 4.6 K, followed by a broad transition below 4.6 K in the second stage. Moreover, different magnetic field dependences are observed for the two stages, where the first stage is field-insensitive while the second stage exhibits strong field dependence. The ultra-low magnetic field measurements indicate that the lower critical field $H_{\rm c1}(T)$ exhibits small anisotropy. Based on a comparative study of the superconducting state in CsBi$_{2}$ and microscopic verification via scanning tunneling microscopy (STM), our results suggest the emergence of exotic and intrinsic superconductivity in this new titanium-based kagome superconductor, establishing it as a promising platform for further exploring the complexity of electronic states in the kagome lattice.
|
Received: 11 November 2025
Revised: 22 November 2025
Accepted manuscript online: 15 December 2025
|
|
PACS:
|
74.70.Ad
|
(Metals; alloys and binary compounds)
|
| |
74.25.Op
|
(Mixed states, critical fields, and surface sheaths)
|
| |
71.20.Gj
|
(Other metals and alloys)
|
|
| Fund: We acknowledge Prof. Hongjun Gao and Prof. Haitao Yang for their high-quality single crystals and insightful comments and Prof. Hui Chen for the assistance in STM measurements. This work was supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403903, 2023YFA1406101, 2024YFA1611102, and 2022YFA1204100), the National Natural Science Foundation of China (Grant Nos. 12304075 and 62488201), CAS Project for Young Scientists in Basic Research (Grant Nos. 2022YSBR-048 and YSBR-003) and the Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700). |
Corresponding Authors:
Hui Chen, Haitao Yang, Ziyi Liu, Hongjun Gao
E-mail: hchenn04@iphy.ac.cn;htyang@iphy.ac.cn;zy_liu@iphy.ac.cn;hjgao@iphy.ac.cn
|
Cite this article:
Jiali Liu(刘家利), Zhen Zhao(赵振), Hongqin Xiao(肖洪钦), Yuhang Zhang(张宇航), Zouyouwei Lu(鲁邹有为), Jihu Lu(卢佶虎), Feng Wu(吴凤), Chengjie Xu(徐诚杰), Hua Zhang(张华), Hui Chen(陈辉), Haitao Yang(杨海涛), Ziyi Liu(刘子儀), Xiaoli Dong(董晓莉), and Hongjun Gao(高鸿钧) Exotic superconductivity in new topological kagome metal CsTi3Bi5 2026 Chin. Phys. B 35 027403
|
[1] Tan H X, Liu Y Z, Wang Z Q and Yan B H 2021 Phys. Rev. Lett. 127 046401 [2] Kang M G, Ye L D, Fang S A, You J S, Levitan A, Han M Y, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, ChanMK, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, Van Den Brink J, Richter M, Prasad Ghimire M, Checkelsky J G and Comin R 2020 Nat. Mater. 19 163 [3] Lin Z, Choi J H, Zhang Q, Qin W, Yi S, Wang P, Li L, Wang Y, Zhang H, Sun Z, Wei L, Zhang S, Guo T, Lu Q, Cho J H, Zeng C and Zhang Z 2018 Phys. Rev. Lett. 121 096401 [4] Yin J X, Zhang S S, Li H, Jiang K, Chang G, Zhang B, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z, Jia S, Wang W and Hasan M Z 2018 Nature 562 91 [5] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 [6] Feng X, Zhang Y, Jiang K and Hu J 2021 Phys. Rev. B 104 165136 [7] Ye L, Kang M, Liu J, Von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638 [8] Yin J X, Zhang S S, Chang G, Wang Q, Tsirkin S S, Guguchia Z, Lian B, Zhou H, Jiang K, Belopolski I, Shumiya N, Multer D, Litskevich M, Cochran T A, Lin H, Wang Z, Neupert T, Jia S, Lei H and Hasan M Z 2019 Nat. Phys. 15 443 [9] Ortiz B R, Gomes L C, Morey J R,Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407 [10] Ran Y, Hermele M, Lee P A and Wen X G 2007 Phys. Rev. Lett. 98 117205 [11] Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R and Senthil T 2020 Science 367 127 [12] Balents L 2010 Nature 464 199 [13] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647 [14] Liu Y, Li J, YangWZ, Lu J Y, Cao B Y, Li H X, ChaiWL,Wu S Q, Li B Z, Sun Y L, Jiao W H, Wang C, Xu X F, Ren Z and Cao G H 2024 Chin. Phys. B 33 057401 [15] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B 104 L041103 [16] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, Gonzalez- Hernandez R, Šmejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003 [17] Ni S, Ma S, Zhang Y, Yuan J, Yang H T, Lu Z Y W, Wang N N, Sun J P, Zhao Z, Li D, Liu S B, Zhang H, Chen H, Jin K, Cheng J G, Yu L, Zhou F, Dong X L, Hu J P, Gao H J and Zhao Z X 2021 Chin. Phys. Lett. 38 057403 [18] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002 [19] Xu H S, Yan Y J, Yin R, Xia W, Fang S, Chen Z, Li Y, Yang W, Guo Y and Feng D L 2021 Phys. Rev. Lett. 127 187004 [20] Yin Q, Tu Z, Gong C, Fu Y, Yan S and Lei H 2021 Chin. Phys. Lett. 38 037403 [21] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801 [22] Yu L, Wang C, Zhang Y, Sander M, Ni S, Lu Z, Ma S, Wang Z, Zhao Z, Chen H, Jiang K, Zhang Y, Yang H, Zhou F, Dong X, Johnson S L, Graf M J, Hu J, Gao H J and Zhao Z arXiv:2107.10714 [23] Mielke C, Das D, Yin J X, Liu H, Gupta R, Jiang Y X, Medarde M,Wu X, Lei H C, Chang J, Dai P, Si Q, Miao H, Thomale R, Neupert T, Shi Y, Khasanov R, Hasan M Z, Luetkens H and Guguchia Z 2022 Nature 602 245 [24] Nie L, Sun K, Ma W R, Song D W, Zheng L X, Liang Z W, Wu P, Yu F H, Li J, Shan M, Zhao D, Li S J, Kang B L, Wu Z M, Zhou Y B, Liu K, Xiang Z J, Ying J J, Wang Z Y, Wu T and Chen X Y 2022 Nature 604 59 [25] Wang Z, Ma S, Zhang Y, Yang H, Zhao Z, Zhu Y, Ni S, Lu Z, Chen H, Jiang K, Yu L, Dong X, Hu J, Gao H J and Zhao Z arXiv:2104.05556 [26] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z and Gao H J 2021 Nature 599 222 [27] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2021 Phys. Rev. X 11 031026 [28] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X, Ruff J, Kautzsch L, Zhang S S, Chang G, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z, Thomale R, Neupert T, Wilson S D and Hasan M Z 2021 Nat. Mater. 20 1353 [29] Yang H, Ye Y, Zhao Z, Liu J, Yi XW, Zhang Y, Xiao H, Shi J, You J Y, Huang Z, Wang B, Wang J, Guo H, Lin X, Shen C, Zhou W, Chen H, Dong X, Su G, Wang Z and Gao H J 2024 Nat. Commun. 15 9626 [30] Wang Y, Liu Y, Hao Z, Cheng W, Deng J, Wang Y, Gu Y, Ma X M, Rong H, Zhang F, Guo S, Zhang C, Jiang Z, Yang Y, Liu W, Jiang Q, Liu Z, Ye M, Shen D, Liu Y, Cui S, Wang L, Liu C, Lin J, Liu Y, Cai Y, Zhu J, Chen C and Mei J W 2023 Chin. Phys. Lett. 40 037102 [31] Zhang Y, Yi X, Zhao Z, Liu J, Xu A, Li D, Lu Z, Liu Y, Lu J, Zhang H, Chen H, Li S, Liu Z, Cheng J, Su G, Yang H, Dong X, Gao H J and Zhao Z 2025 Chin. Phys. B 34 077107 [32] Yang J, Yi X, Zhao Z, Xie Y, Miao T, Luo H, Chen H, Liang B, ZhuW, Ye Y, You J Y, Gu B, Zhang S, Zhang F, Yang F,Wang Z, Peng Q, Mao H, Liu G, Xu Z, Chen H, Yang H, Su G, Gao H, Zhao L and Zhou X J 2023 Nat. Commun. 14 4089 [33] Liu B, Kuang M Q, Luo Y, Li Y, Hu C, Liu J, Xiao Q, Zheng X, Huai L, Peng S,Wei Z, Shen J,Wang B, Miao Y, Sun X, Ou Z, Cui S, Sun Z, Hashimoto M, Lu D, Jozwiak C, Bostwick A, Rotenberg E, Moreschini L, Lanzara A, Wang Y, Peng Y, Yao Y, Wang Z and He J 2023 Phys. Rev. Lett. 131 026701 [34] Li H, Cheng S, Ortiz B R, Tan H,Werhahn D, Zeng K, Johrendt D, Yan B, Wang Z, Wilson S D and Zeljkovic I 2023 Nat. Phys. 19 1591 [35] Hu Y, Le C, Zhang Y, Zhao Z, Liu J, Ma J, Plumb N C, Radovic M, Chen H, Schnyder A P,Wu X, Dong X, Hu J, Yang H, Gao H J and Shi M 2023 Nat. Phys. 19 1827 [36] Nie J Y, Yang X F, Chen K Y, Liu X Q, Xia W, Wang J, Zhang R, Dai D Z, Zhao C C, Tu C P, Dong H L, Jin X B, Deng J K, Zhang X, Guo Y F and Li S Y 2025 Chin. Phys. Lett. 42 070713 [37] Sun S, Liu K and Lei H 2016 J. Phys. Condes. Matter 28 085701 [38] Gutowska S, Wiendlocha B, Klimczuk T and Winiarski M J 2023 J. Phys. Chem. C 127 14402 [39] McQueen T M, Huang Q, Ksenofontov V, Felser C, Xu Q, Zandbergen H, Hor Y S, Allred J, Williams A J, Qu D, Checkelsky J, Ong N P and Cava R J 2009 Phys. Rev. B 79 014522 [40] Bao W, Qiu Y, Huang Q, Green M A, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M, Qian B, Vehstedt E K, Yang J, Pham H M, Spinu L and Mao Z Q 2009 Phys. Rev. Lett. 102 247001 [41] Hu J, Wang G C, Qian B and Mao Z Q 2012 Supercond. Sci. Technol. 25 084011 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|