|
|
Optical study on intermediate-valence compounds Yb1-xLuxAl3 |
J L Lv(吕佳林)1,2, J L Luo(雒建林)1,2,3, N L Wang(王楠林)3,4 |
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
4 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China |
|
|
Abstract We report an optical spectroscopy study on intermediate valence system Yb1-xLuxAl3 with x=0, 0.25, 0.5, 0.75, and 1. The Kondo temperature in the system is known to increase with increasing Lu concentration. Therefore, it is expected that the energy scale of the hybridization gap should increase with increasing Lu concentration based on the periodic Anderson model. On the contrary, we find that the spectral structure associated with the hybridization effect shifts monotonically to lower energy. Furthermore, the Lu substitution results in a substantial increase of the free carrier spectral weight and less pronounced plasma frequency reduction upon lowering temperature. We attribute the effect to the disruption of the Kondo lattice periodicity by the random substitution of Yb by Lu. The work highlights the importance of the lattice periodicity of the rare earth element for understanding the Kondo lattice phenomena.
|
Received: 22 November 2017
Accepted manuscript online:
|
PACS:
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
75.30.Mb
|
(Valence fluctuation, Kondo lattice, and heavy-fermion phenomena)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11327806 and GZ1123) and the National Key Research and Development Program of China (Grant Nos. 2016YFA0300902 and 2017YFA0302904). |
Corresponding Authors:
N L Wang
E-mail: nlwang@pku.edu.cn
|
Cite this article:
J L Lv(吕佳林), J L Luo(雒建林), N L Wang(王楠林) Optical study on intermediate-valence compounds Yb1-xLuxAl3 2018 Chin. Phys. B 27 017803
|
[1] |
Degiorgi L 1999 Rev. Mod. Phys. 71 687
|
[2] |
Riseborough P S 2000 Adv. Phys. 49 257
|
[3] |
Chen R Y and Wang N L 2016 Reports on Progress in Physics 79 064502
|
[4] |
Demsar J, Thorsmølle V K, Sarrao J L and Taylor A J 2006 Phys. Rev. Lett. 96 037401
|
[5] |
Demsar J, Sarrao J L and Taylor A J 2006 J. Phys.: Condens. Matter 18 R281
|
[6] |
Lawrence J M, Riseborough P S, Booth C H, Sarrao J L, Thompson J D and Osborn R 2001 Phys. Rev. B 63 054427
|
[7] |
Scoboria P, Crow J and Mihalisin T 1979 J. Appl. Phys. 50 1895
|
[8] |
Nowik I, Campagna M and Wertheim G K 1977 Phys. Rev. Lett. 38 43
|
[9] |
Varma C 1979 Solid State Commun. 30 537
|
[10] |
Kasaya M, Iga F, Takigawa M and Kasuya T 1985 J. Mag. Mag. Mater. 47 429
|
[11] |
Oh S, Aleen J, Torikachvili M and Maple M 1985 J. Mag. Mag. Mater. 52 183
|
[12] |
Pasturel A, Chatilloncolinet C, Percheronguegan A and Achard J 1983 j 90 21
|
[13] |
Ebihara T, Inada Y, Murakawa M, Uji S, Terakura C, Terashima T, Yamamoto E, Haga Y, Onuki Y and Harima H 2000 J. Phys. Soc. Jpn. 69 895
|
[14] |
Cornelius A L, Lawrence J M, Ebihara T, Riseborough P S, Booth C H, Hundley M F, Pagliuso P G, Sarrao J L, Thompson J D, Jung M H, Lacerda A H and Kwei G H 2002 Phys. Rev. Lett. 88 117201
|
[15] |
Bauer E D, Booth C H, Lawrence J M, Hundley M F, Sarrao J L, Thompson J D, Riseborough P S and Ebihara T 2004 Phys. Rev. B 69 125102
|
[16] |
Ebihara T, Bauer E D, Cornelius A L, Lawrence J M, Harrison N, Thompson J D, Sarrao J L, Hundley M F and Uji S 2000 Phys. Rev. Lett. 90 166404
|
[17] |
Ono Y, Matsuura T and Kuroda Y 1991 J. Phys. Soc. Jpn. 60 3475
|
[18] |
Burdin S, Georges A and Grempel D R 2000 Phys. Rev. Lett. 85 1048
|
[19] |
Ebihara T, Uji S, Terakura C, Terashima T, Yamamoto E, Haga Y, Inada Y and Onuki Y 2000 Physica B 281 754
|
[20] |
Demsar J, Kabanov V V, Alexandrov A S, Lee H J, Bauer E D, Sarrao J L and Taylor A J 2009 Phys. Rev. B 80 1
|
[21] |
Okamura H, Michizawa T, Nanba T and Ebihara T 2004 J. Phys. Soc. Jpn. 73 2045
|
[22] |
Logan D E and Vidhyadhiraja N S 2005 J. Phys.: Condens. Matter 17 2935
|
[23] |
Vidhyadhiraja N S and Logan D E 2005 J. Phys.: Condens. Matter 17 2959
|
[24] |
Shim J H, Haule K and Kotliar G 2007 Science 318 1615
|
[25] |
Burch K S, Dordevic S V, Mena F P, Kuzmenko A B, van der Marel D, Sarrao J L, Jeffries J R, Bauer E D, Maple M B and Basov D N 2007 Phys. Rev. B 75 054523
|
[26] |
Hancock J N, McKnew T, Schlesinger Z, Sarrao J L and Fisk Z 2004 Phys. Rev. Lett. 92 186405
|
[27] |
Zhang M Y, Chen R Y, Dong T and Wang N L 2017 Phys. Rev. B 95 1
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|