Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 024208    DOI: 10.1088/1674-1056/adfdc5
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optical temporal interference model for investigation and manipulation of non-integer high-order harmonic generation

Zhao-Yue Meng(孟昭越)1,2,3, Yun Pan(潘云)4, Jun-Ping Wang(王军平)1,†, and Xi Zhao(赵曦)2
1 School of Physics, Liaoning University, Shenyang 110036, China;
2 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China;
3 School of Materials and New Energy, South China Normal University, Shanwei 516625, China;
4 School of Science, Shenyang Institute of Engineering, Shenyang 110136, China
Abstract  High-precision optical frequency measurement serves as a cornerstone of modern science and technology, enabling advancements in fields ranging from fundamental physics to quantum information technologies. Obtaining precise photon frequencies, especially in the ultraviolet or even extreme ultraviolet regimes, is a key goal in both light-matter interaction experiments and engineering applications. High-order harmonic generation (HHG) is an ideal light source for producing such photons. In this work, we propose an optical temporal interference model (OTIM) that establishes an analogy with multi-slit Fraunhofer diffraction (MSFD) to manipulate fine-frequency photon generation by exploiting the temporal coherence of HHG processes. Our model provides a unified physical framework for three distinct non-integer HHG generation schemes: single-pulse, shaped-pulse, and laser pulse train approaches, which correspond to single-MSFD-like, double-MSFD-like, and multi-MSFD-like processes, respectively. Arbitrary non-integer HHG photons can be obtained using our scheme. Our approach provides a new perspective for accurately measuring and controlling photon frequencies in fields such as frequency comb technology, interferometry, and atomic clocks.
Keywords:  high-order harmonic generation      optical temporal interference      multi-slit Fraunhofer diffraction  
Received:  29 May 2025      Revised:  26 July 2025      Accepted manuscript online:  21 August 2025
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant No. 12304379), the Natural Science Foundation of Liaoning Province (Grant No. 2024-BS-269), and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 025A1515011117).
Corresponding Authors:  Jun-Ping Wang     E-mail:  wangjp@lnu.edu.cn

Cite this article: 

Zhao-Yue Meng(孟昭越), Yun Pan(潘云), Jun-Ping Wang(王军平), and Xi Zhao(赵曦) Optical temporal interference model for investigation and manipulation of non-integer high-order harmonic generation 2026 Chin. Phys. B 35 024208

[1] Udem T, Holzwarth R and Hänsch T 2002 Nature 416 233
[2] Margolis H S 2009 J. Phys. B 42 154017
[3] Yao Y, Li B, Yang G, Chen X, Hao Y, Yu H, Jiang Y and Ma L 2021 Photon. Res. 9 98
[4] Pupeza I, Zhang C, Högner M and Ye J 2021 Nat. Photonics 15 175
[5] Chang L, Liu S and Bowers J E 2022 Nat. Photonics 16 95
[6] Shao X D, Yan Y, Han H and Wei Z 2024 Astron. Tech. instrum. 1 105
[7] Spencer D T, Drake T, Briles T C, et al. 2018 Nature 557 81
[8] Cai Y, Roslund J, Thiel V, Fabre C and Treps N 2021 npj Quantum Inf. 7 82
[9] Kang G, Lee Y, Kim J, Yang D, Nam H K, Kim S, Baek S, Yoon H, Lee J, Kim T T and Kim Y J 2024 Nanophotonics 13 983
[10] Hiraoka T, Inose Y, Arikawa T, Ito H and Tanaka K 2022 Nat. Commun. 13 3740
[11] Yun C, Teng H, Zhang W, Zhan M, Han H, Zhong X, Wei Z, Wang B and Hou X 2010 Chin. Phys. B 19 124210
[12] Bertrand J, Wörner H J, Bandulet H C, Bisson E, Spanner M, Kieffer J C, Villeneuve D and Corkum P B 2011 Phys. Rev. Lett. 106 023001
[13] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F and Reis D A 2011 Nat. Phys. 7 138
[14] Tudorovskaya M and Lein M 2017 Phys. Rev. A 95 043418
[15] Qiao Y, Wang J, Yan Y, Song S, Chen Z, Liu A, Chen J, Guo F and Yang Y 2022 Chin. Phys. B 31 064214
[16] Wang S, Guo J, He X, Liang Y, Xie B, Zhong S, Teng H and Wei Z 2023 Chin. Phys. B 32 063301
[17] Huang P C, Hernández-García C, Huang J T, Huang P Y, Lu C H, Rego L, Hickstein D D, Ellis J L, Jaron-Becker A, Becker A, Yang S D, Durfee C G, Plaja L, Kapteyn H C, Murnane M M, Kung A H and Chen M C 2018 Nat. Photon. 12 349
[18] Ren Z, Zhang B, Yang Y, Zhu Y, Zhao J and Zhao Z 2023 Results Phys. 55 107181
[19] Torres R, Kajumba N, Underwood J G, Robinson J S, Baker S, Tisch J W G, de Nalda R, Bryan W A, Velotta R, Altucci C, Turcu I C E and Marangos J P 2007 Phys. Rev. Lett. 98 203007
[20] Zhang R, Wang F, Yuan H, Chen S, Yang C, Ou T, Song J, Liao Q and Lu P 2024 Phys. Rev. A 109 043118
[21] Liang C T, Zhang J J and Li P C 2023 Chin. Phys. B 32 033201
[22] Wörner H J, Bertrand J B, Kartashov D V, Corkum P B and Villeneuve D M 2010 Nature 466 604
[23] Le A T, Morishita T, Lucchese R and Lin C D 2012 Phys. Rev. Lett. 109 203004
[24] Wagner N L, Wüest A, Christov I P, Popmintchev T, Zhou X, Murnane M M and Kapteyn H C 2006 Proc. Natl. Acad. Sci. 103 13279
[25] Phan N L, Le C T, Hoang V H and Le V H 2019 Phys. Chem. Chem. Phys. 21 24177
[26] Qiao Y, Chen J, Zhou S, Chen J, Jiang S and Yang Y 2024 Chin. Phys. Lett. 41 014205
[27] Takahashi E J, Kanai T, Ishikawa K L, Nabekawa Y and Midorikawa K 2007 Phys. Rev. Lett. 99 053904
[28] Kfir O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw J M, Fleischer A, Kapteyn H, Murnane M and Cohen O 2015 Nat. Photon. 9 99
[29] Ge X L, Du H, Wang Q, Guo J and Liu X S 2015 Chin. Phys. B 24 023201
[30] Zhong H Y, Guo J, Zhang H D, Du H and Liu X S 2015 Chin. Phys. B 24 073202
[31] Zhao X, Wang S J, Yu W W, Wei H, Wei C, Wang B, Chen J and Lin C D 2020 Phys. Rev. Appl. 13 034043
[32] Zhao X, Li S, Driver T, Hoang V H, Le A T, Cryan J P, Marinelli A and Lin C D 2022 Phys. Rev. A 105 013111
[33] Fu W, Yu J, Li R, Li B, Lai Y H and Li W 2024 ACS Photonics 11 53
[34] Ghimire S and Reis D A 2019 Nat. Phys. 15 10
[35] Weissenbilder R, Carlström S, Rego L, et al. 2022 Nat. Rev. Phys. 4 713
[36] Wang L, Wang X W, Xiao F, Wang J C, Tao W K, Zhang D W and Zhao Z X 2023 Chin. Phys. Lett. 40 113201
[37] Chen J Q, JiangWL, Qiao Y, Yang Y J and Chen J G 2025 Chin. Phys. Lett. 42 013201
[38] Zhang C P and Miao X Y 2023 Chin. Phys. Lett. 40 124201
[39] Borrego-Varillas R, Lucchini M and Nisoli M 2022 Rep. Prog. Phys. 85 066401
[40] Wang L, Xiao F, Song P, TaoWK, Sun X,Wang J C, Zheng Z G, Zhao J, Wang X W and Zhao Z X 2023 Chin. Phys. Lett. 40 114203
[41] Zhao J, Liu J L, Wang X W, Yuan J M and Zhao Z X 2022 Chin. Phys. Lett. 39 123201
[42] Fu T T, Zhou S S, Chen J G,Wang J, Guo F M and Yang Y J 2023 Opt. Express 31 30171
[43] Klemke N, Tancogne-Dejean N, Rossi G M, et al. 2019 Nat. Commun. 10 1319
[44] Hu H, Li N, Liu P, Li R and Xu Z 2017 Phys. Rev. Lett. 119 173201
[45] Yang Y, Lu J,Manjavacas A, Luk T S, Liu H, Kelley K, Maria J P, Runnerstrom E L, Sinclair M B, Ghimire S and Brener I 2019 Nat. Phys. 15 1022
[46] Qiao Y, Chen J, Li Z, et al. 2024 Opt. Lett. 49 3986
[47] Nourbakhsh Z, Tancogne-Dejean N, Merdji H and Rubio A 2021 Phys. Rev. Appl. 15 014013
[48] Calegari F, Sansone G, Stagira S, Vozzi C and Nisoli M 2016 J. Phys. B 49 062001
[49] Maiuri M, Garavelli M and Cerullo G 2019 J. Am. Chem. Soc. 142 3
[50] Chini M, Zhao K and Chang Z 2014 Nat. Photon. 8 178
[51] Paul P M, Toma E S, Breger P, et al. 2001 Science 292 1689
[52] Feng X, Gilbertson S, Mashiko H, et al. 2009 Phys. Rev. Lett. 103 183901
[53] Han J, Tang X, Yin Z, Wang K, Fu Y, Wang B, Chen Y, Zhang C and Jin C 2022 Opt. Express 30 47942
[54] Silva R, Blinov I V, Rubtsov A N, Smirnova O and IvanovM2018 Nat. Photon. 12 266
[55] Xing M, Wang J, Zhao X and Zhou S S 2025 Chin. Phys. Lett. 42 043201
[56] Raith P, Ott C, Anderson C P, Kaldun A, Meyer K, Laux M, Zhang Y, Pfeifer T 2012 Appl. Phys. Lett. 100 121104
[57] Schmid C P, Weigl L, Grössing P, et al. 2021 Nature 593 385
[58] Xia C L, Lan Y Y and Miao X Y 2021 Chin. Phys. B 30 043202
[59] Lange C S, Hansen T and Madsen L B 2024 Phys. Rev. A 109 063103
[60] Carrera J J, Son S K and Chu S I 2008 Phys. Rev. A 77 031401
[61] Carrera J J and Chu S I 2009 Phys. Rev. A 79 063410
[62] Chiril C C, Dreissigacker I, van der Zwan E V and Lein M 2010 Phys. Rev. A 81 033412
[63] Born M andWolf E 2019 Principles of Optics (Cambridge: Cambridge Univ. Press)
[64] Lewenstein M, Balcou P, Ivanov M Y, L’Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
[65] Li Q, Li Y, Guo F, et al. 2024 Phys. Rev. A 109 063112
[66] Weiner A M 2000 Rev. Sci. Instrum. 71 1929
[1] 3D-GTDSE: A GPU-based code for solving 3D-TDSE in Cartesian coordinates
Ke Peng(彭科), Aihua Liu(刘爱华), Jun Wang(王俊), and Xi Zhao(赵曦). Chin. Phys. B, 2025, 34(9): 094203.
[2] Machine learning approach to reconstruct dephasing time from solid HHG spectra
Jiahao Liu(刘佳豪), Xi Zhao(赵曦), Jun Wang(王俊), and Songbin Zhang(张松斌). Chin. Phys. B, 2025, 34(9): 097804.
[3] Experimental manipulation of fine structures in high harmonic spectrum of aligned CO2 molecules
Ge-Wen Wang(王革文), Yi-Wen Zhao(赵逸文), Yi-Chen Wang(王一琛), Jing Ma(马婧), Bo-Dun Liu(刘博敦), Wei Jiang(姜威), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2025, 34(6): 063301.
[4] High-order harmonic generation of methane in an elliptically polarized field
Shu-Shan Zhou(周书山), Yu-Long Li(李玉龙), Zhi-Xue Zhao(赵志学), Man Xing(幸满), Nan Xu(许楠), Hao Wang(王浩), Jun Wang(王俊), Xi Zhao(赵曦), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2025, 34(6): 063202.
[5] Frequency shifts of high-order harmonics from ZnO crystals by chirped laser pulses
Yu Zhao(赵宇), Xiao-Jin Liu(刘晓瑾), Shuang Wang(王爽), Xiao-Xin Huo(霍晓鑫), Yun-He Xing(邢云鹤), and Jun Zhang(张军). Chin. Phys. B, 2025, 34(3): 033201.
[6] Comparison of high-order harmonic generation in defect-free and defective solids with different time delays
Shujie Zhao(赵书杰), Yuanzuo Li(李源作), Jun Zhang(张军), and Xuefei Pan(潘雪飞). Chin. Phys. B, 2025, 34(12): 123201.
[7] Influence of excited states in high-order harmonic generation at intense mid-infrared field
Yan Fang(方言), Da-Wei Tian(田大纬), Yue Cao(曹玥), Xiao-Lei Hao(郝小雷), and Zheng Shu(舒正). Chin. Phys. B, 2025, 34(10): 103201.
[8] Interference of harmonics emitted by different tunneling momentum channels in laser fields
Ling-Yu Zhang(张玲玉), Zhuo-Xuan Xie(谢卓璇), Can Wang(王灿), Xin-Lei Ge(葛鑫磊), and Jing Guo(郭静). Chin. Phys. B, 2024, 33(9): 093201.
[9] Elliptically polarized high-order harmonic generation of Ar atom in an intense laser field
Jie Hu(胡杰), Yi-Chen Wang(王一琛), Qiu-Shuang Jing(景秋霜), Wei Jiang(姜威), Ge-Wen Wang(王革文), Yi-Wen Zhao(赵逸文), Bo Xiao(肖礴), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2024, 33(5): 054208.
[10] Generating attosecond pulses with controllable polarization from cyclic H32+ molecules by bichromatic circular fields
Si-Qi Zhang(张思琪), Bing Zhang(张冰), Bo Yan(闫博), Xiang-Qian Jiang(姜向前), and Xiu-Dong Sun(孙秀冬). Chin. Phys. B, 2024, 33(2): 023301.
[11] High-order harmonic generation of ZnO crystals in chirped and static electric fields
Ling-Yu Zhang(张玲玉), Yong-Lin He(何永林), Zhuo-Xuan Xie(谢卓璇), Fang-Yan Gao(高芳艳), Qing-Yun Xu(徐清芸), Xin-Lei Ge(葛鑫磊), Xiang-Yi Luo(罗香怡), and Jing Guo(郭静). Chin. Phys. B, 2024, 33(1): 013102.
[12] Elliptically polarized high-order harmonic generation in nitrogen molecules with cross-linearly polarized two-color laser fields
Chunyang Zhai(翟春洋), Yinmeng Wu(吴银梦), Lingling Qin(秦玲玲), Xiang Li(李翔), Luke Shi(史璐珂), Ke Zhang(张可), Shuaijie Kang(康帅杰), Zhengfa Li(李整法), Yingbin Li(李盈傧), Qingbin Tang(汤清彬), and Benhai Yu(余本海). Chin. Phys. B, 2023, 32(7): 073301.
[13] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[14] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[15] Tailoring OAM spectrum of high-order harmonic generation driven by two mixed Laguerre-Gaussian beams with nonzero radial nodes
Beiyu Wang(汪倍羽), Jiaxin Han(韩嘉鑫), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124208.
No Suggested Reading articles found!