| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Optical temporal interference model for investigation and manipulation of non-integer high-order harmonic generation |
| Zhao-Yue Meng(孟昭越)1,2,3, Yun Pan(潘云)4, Jun-Ping Wang(王军平)1,†, and Xi Zhao(赵曦)2 |
1 School of Physics, Liaoning University, Shenyang 110036, China; 2 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China; 3 School of Materials and New Energy, South China Normal University, Shanwei 516625, China; 4 School of Science, Shenyang Institute of Engineering, Shenyang 110136, China |
|
|
|
|
Abstract High-precision optical frequency measurement serves as a cornerstone of modern science and technology, enabling advancements in fields ranging from fundamental physics to quantum information technologies. Obtaining precise photon frequencies, especially in the ultraviolet or even extreme ultraviolet regimes, is a key goal in both light-matter interaction experiments and engineering applications. High-order harmonic generation (HHG) is an ideal light source for producing such photons. In this work, we propose an optical temporal interference model (OTIM) that establishes an analogy with multi-slit Fraunhofer diffraction (MSFD) to manipulate fine-frequency photon generation by exploiting the temporal coherence of HHG processes. Our model provides a unified physical framework for three distinct non-integer HHG generation schemes: single-pulse, shaped-pulse, and laser pulse train approaches, which correspond to single-MSFD-like, double-MSFD-like, and multi-MSFD-like processes, respectively. Arbitrary non-integer HHG photons can be obtained using our scheme. Our approach provides a new perspective for accurately measuring and controlling photon frequencies in fields such as frequency comb technology, interferometry, and atomic clocks.
|
Received: 29 May 2025
Revised: 26 July 2025
Accepted manuscript online: 21 August 2025
|
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
| |
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
| Fund: This project was supported by the National Natural Science Foundation of China (Grant No. 12304379), the Natural Science Foundation of Liaoning Province (Grant No. 2024-BS-269), and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 025A1515011117). |
Corresponding Authors:
Jun-Ping Wang
E-mail: wangjp@lnu.edu.cn
|
Cite this article:
Zhao-Yue Meng(孟昭越), Yun Pan(潘云), Jun-Ping Wang(王军平), and Xi Zhao(赵曦) Optical temporal interference model for investigation and manipulation of non-integer high-order harmonic generation 2026 Chin. Phys. B 35 024208
|
[1] Udem T, Holzwarth R and Hänsch T 2002 Nature 416 233 [2] Margolis H S 2009 J. Phys. B 42 154017 [3] Yao Y, Li B, Yang G, Chen X, Hao Y, Yu H, Jiang Y and Ma L 2021 Photon. Res. 9 98 [4] Pupeza I, Zhang C, Högner M and Ye J 2021 Nat. Photonics 15 175 [5] Chang L, Liu S and Bowers J E 2022 Nat. Photonics 16 95 [6] Shao X D, Yan Y, Han H and Wei Z 2024 Astron. Tech. instrum. 1 105 [7] Spencer D T, Drake T, Briles T C, et al. 2018 Nature 557 81 [8] Cai Y, Roslund J, Thiel V, Fabre C and Treps N 2021 npj Quantum Inf. 7 82 [9] Kang G, Lee Y, Kim J, Yang D, Nam H K, Kim S, Baek S, Yoon H, Lee J, Kim T T and Kim Y J 2024 Nanophotonics 13 983 [10] Hiraoka T, Inose Y, Arikawa T, Ito H and Tanaka K 2022 Nat. Commun. 13 3740 [11] Yun C, Teng H, Zhang W, Zhan M, Han H, Zhong X, Wei Z, Wang B and Hou X 2010 Chin. Phys. B 19 124210 [12] Bertrand J, Wörner H J, Bandulet H C, Bisson E, Spanner M, Kieffer J C, Villeneuve D and Corkum P B 2011 Phys. Rev. Lett. 106 023001 [13] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F and Reis D A 2011 Nat. Phys. 7 138 [14] Tudorovskaya M and Lein M 2017 Phys. Rev. A 95 043418 [15] Qiao Y, Wang J, Yan Y, Song S, Chen Z, Liu A, Chen J, Guo F and Yang Y 2022 Chin. Phys. B 31 064214 [16] Wang S, Guo J, He X, Liang Y, Xie B, Zhong S, Teng H and Wei Z 2023 Chin. Phys. B 32 063301 [17] Huang P C, Hernández-García C, Huang J T, Huang P Y, Lu C H, Rego L, Hickstein D D, Ellis J L, Jaron-Becker A, Becker A, Yang S D, Durfee C G, Plaja L, Kapteyn H C, Murnane M M, Kung A H and Chen M C 2018 Nat. Photon. 12 349 [18] Ren Z, Zhang B, Yang Y, Zhu Y, Zhao J and Zhao Z 2023 Results Phys. 55 107181 [19] Torres R, Kajumba N, Underwood J G, Robinson J S, Baker S, Tisch J W G, de Nalda R, Bryan W A, Velotta R, Altucci C, Turcu I C E and Marangos J P 2007 Phys. Rev. Lett. 98 203007 [20] Zhang R, Wang F, Yuan H, Chen S, Yang C, Ou T, Song J, Liao Q and Lu P 2024 Phys. Rev. A 109 043118 [21] Liang C T, Zhang J J and Li P C 2023 Chin. Phys. B 32 033201 [22] Wörner H J, Bertrand J B, Kartashov D V, Corkum P B and Villeneuve D M 2010 Nature 466 604 [23] Le A T, Morishita T, Lucchese R and Lin C D 2012 Phys. Rev. Lett. 109 203004 [24] Wagner N L, Wüest A, Christov I P, Popmintchev T, Zhou X, Murnane M M and Kapteyn H C 2006 Proc. Natl. Acad. Sci. 103 13279 [25] Phan N L, Le C T, Hoang V H and Le V H 2019 Phys. Chem. Chem. Phys. 21 24177 [26] Qiao Y, Chen J, Zhou S, Chen J, Jiang S and Yang Y 2024 Chin. Phys. Lett. 41 014205 [27] Takahashi E J, Kanai T, Ishikawa K L, Nabekawa Y and Midorikawa K 2007 Phys. Rev. Lett. 99 053904 [28] Kfir O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw J M, Fleischer A, Kapteyn H, Murnane M and Cohen O 2015 Nat. Photon. 9 99 [29] Ge X L, Du H, Wang Q, Guo J and Liu X S 2015 Chin. Phys. B 24 023201 [30] Zhong H Y, Guo J, Zhang H D, Du H and Liu X S 2015 Chin. Phys. B 24 073202 [31] Zhao X, Wang S J, Yu W W, Wei H, Wei C, Wang B, Chen J and Lin C D 2020 Phys. Rev. Appl. 13 034043 [32] Zhao X, Li S, Driver T, Hoang V H, Le A T, Cryan J P, Marinelli A and Lin C D 2022 Phys. Rev. A 105 013111 [33] Fu W, Yu J, Li R, Li B, Lai Y H and Li W 2024 ACS Photonics 11 53 [34] Ghimire S and Reis D A 2019 Nat. Phys. 15 10 [35] Weissenbilder R, Carlström S, Rego L, et al. 2022 Nat. Rev. Phys. 4 713 [36] Wang L, Wang X W, Xiao F, Wang J C, Tao W K, Zhang D W and Zhao Z X 2023 Chin. Phys. Lett. 40 113201 [37] Chen J Q, JiangWL, Qiao Y, Yang Y J and Chen J G 2025 Chin. Phys. Lett. 42 013201 [38] Zhang C P and Miao X Y 2023 Chin. Phys. Lett. 40 124201 [39] Borrego-Varillas R, Lucchini M and Nisoli M 2022 Rep. Prog. Phys. 85 066401 [40] Wang L, Xiao F, Song P, TaoWK, Sun X,Wang J C, Zheng Z G, Zhao J, Wang X W and Zhao Z X 2023 Chin. Phys. Lett. 40 114203 [41] Zhao J, Liu J L, Wang X W, Yuan J M and Zhao Z X 2022 Chin. Phys. Lett. 39 123201 [42] Fu T T, Zhou S S, Chen J G,Wang J, Guo F M and Yang Y J 2023 Opt. Express 31 30171 [43] Klemke N, Tancogne-Dejean N, Rossi G M, et al. 2019 Nat. Commun. 10 1319 [44] Hu H, Li N, Liu P, Li R and Xu Z 2017 Phys. Rev. Lett. 119 173201 [45] Yang Y, Lu J,Manjavacas A, Luk T S, Liu H, Kelley K, Maria J P, Runnerstrom E L, Sinclair M B, Ghimire S and Brener I 2019 Nat. Phys. 15 1022 [46] Qiao Y, Chen J, Li Z, et al. 2024 Opt. Lett. 49 3986 [47] Nourbakhsh Z, Tancogne-Dejean N, Merdji H and Rubio A 2021 Phys. Rev. Appl. 15 014013 [48] Calegari F, Sansone G, Stagira S, Vozzi C and Nisoli M 2016 J. Phys. B 49 062001 [49] Maiuri M, Garavelli M and Cerullo G 2019 J. Am. Chem. Soc. 142 3 [50] Chini M, Zhao K and Chang Z 2014 Nat. Photon. 8 178 [51] Paul P M, Toma E S, Breger P, et al. 2001 Science 292 1689 [52] Feng X, Gilbertson S, Mashiko H, et al. 2009 Phys. Rev. Lett. 103 183901 [53] Han J, Tang X, Yin Z, Wang K, Fu Y, Wang B, Chen Y, Zhang C and Jin C 2022 Opt. Express 30 47942 [54] Silva R, Blinov I V, Rubtsov A N, Smirnova O and IvanovM2018 Nat. Photon. 12 266 [55] Xing M, Wang J, Zhao X and Zhou S S 2025 Chin. Phys. Lett. 42 043201 [56] Raith P, Ott C, Anderson C P, Kaldun A, Meyer K, Laux M, Zhang Y, Pfeifer T 2012 Appl. Phys. Lett. 100 121104 [57] Schmid C P, Weigl L, Grössing P, et al. 2021 Nature 593 385 [58] Xia C L, Lan Y Y and Miao X Y 2021 Chin. Phys. B 30 043202 [59] Lange C S, Hansen T and Madsen L B 2024 Phys. Rev. A 109 063103 [60] Carrera J J, Son S K and Chu S I 2008 Phys. Rev. A 77 031401 [61] Carrera J J and Chu S I 2009 Phys. Rev. A 79 063410 [62] Chiril C C, Dreissigacker I, van der Zwan E V and Lein M 2010 Phys. Rev. A 81 033412 [63] Born M andWolf E 2019 Principles of Optics (Cambridge: Cambridge Univ. Press) [64] Lewenstein M, Balcou P, Ivanov M Y, L’Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117 [65] Li Q, Li Y, Guo F, et al. 2024 Phys. Rev. A 109 063112 [66] Weiner A M 2000 Rev. Sci. Instrum. 71 1929 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|