|
|
|
Comparison of high-order harmonic generation in defect-free and defective solids with different time delays |
| Shujie Zhao(赵书杰)1, Yuanzuo Li(李源作)1, Jun Zhang(张军)2, and Xuefei Pan(潘雪飞)1,† |
1 College of Science, Northeast Forestry University, Harbin 150040, China; 2 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
|
|
Abstract We theoretically investigate the high-order harmonic generation (HHG) of defect-free solids by solving the time-dependent Schrödinger equation (TDSE). The results show that the harmonic intensity can be enhanced, harmonic order can be extended, and modulation near the cutoff order becomes smaller for the second plateau by increasing the time delay. These effects are due to an increase of the electron population in higher energy bands, where the larger band gap allows electrons to release more energy, and the long electronic paths are suppressed. Additionally, we also investigate the HHG of defective solids by Bohmian trajectories (BT). It is found that the harmonic intensity of the second plateau can be further enhanced. Simultaneously, cutoff order is also extended due to Bohmian particles moving farther away from the defective zone.
|
Received: 03 April 2025
Revised: 22 May 2025
Accepted manuscript online: 28 May 2025
|
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
| |
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
| |
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
| Fund: Project supported by the Natural Science Foundation of Jilin Province of China (Grant No. 20230101014JC), the Fundamental Research Funds for the Central Universities (Grant No. 2572021BC05), and the National Natural Science Foundation of China (Grant No. 12374265). |
Corresponding Authors:
Xuefei Pan
E-mail: panxf@nefu.edu.cn
|
Cite this article:
Shujie Zhao(赵书杰), Yuanzuo Li(李源作), Jun Zhang(张军), and Xuefei Pan(潘雪飞) Comparison of high-order harmonic generation in defect-free and defective solids with different time delays 2025 Chin. Phys. B 34 123201
|
[1] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [2] Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P and Ivanov M Y 2009 Nature 460 972 [3] Zhang J, Ge X L, Wang T, Xu T T, Guo J and Liu X S 2015 Phys. Rev. A 92 013418 [4] Huo X X, Wang S, Sun L, Xing Y H, Zhang J and Liu X S 2022 Phys. Rev. A 106 023102 [5] Sola I J, Mével E, Elouga L, Constant E, Strelkov V, Poletto L, Villoresi P, Benedetti E, Caumes J P, Stagira S, Vozzi C, Sansone G and Nisoli M 2006 Nat. Phys. 2 319 [6] Zhao K, Zhang Q, Chini M, Wu Y, Wang X W and Chang Z H 2012 Opt. Lett. 37 3891 [7] Corkum P B and Krausz F 2007 Nat. Phys. 3 381 [8] Géneaux R, Kaplan C J, Yue L, ROSS A D, Bækhhøj J E, Kraus P M, Chang H T, Guggenmos A, Huang M Y, Zürch M, Schafer K J, Neumark D M, Gaarde M B and Leone R 2007 Nat. Phys. 3 381 [9] Wózniak A P and Moszyński R 2024 Phys. Rev. A 109 013523 [10] Li L, Lan P F, He L X, Cao W, Zhang Q B and Lu P X 2020 Phys. Rev. Lett. 124 157403 [11] Ghimire S, Dichiara A D, Sistrunk E, Agostini P, Dimauro L F and Reis A 2011 Nat. Phys. 7 138 [12] You Y S, Reis D A and Ghimire S 2017 Nat. Phys. 13 345 [13] Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B and Reis D A 2016 Nature 534 520 [14] Li L, Lan P F, Zhu X S, Huang T F, Zhang Q B, Lein and Lu P X 2019 Phys. Rev. Lett. 122 193901 [15] Wang Y, Shao T J, Li X F, Liu Y, Jiang P Z, Zhang W, Zhang L F, Bian X B, Liu Y Q, Gong Q H and Wu C Y 2023 Opt. Lett. 31 3379 [16] Song X H, Yang S D, Zuo R X, Meier T and YangWF 2020 Phys. Rev. A 101 033410 [17] He Y L, Guo J, Gao F Y and Liu X S 2022 Phys. Rev. B 105 024305 [18] Jimeńez-galań Á, Bossaer C, Ernotte G, Parks A M, Silva R E F, Villeneuve D M, Staudte A, Brabec T, Luican-mayer A and Vampa G 2022 Nat. Commun. 14 8421 [19] Huttner U, Kira M and Koch S W 2017 Laser Photon. Rev. 105 1700049 [20] Kruchinin S Y, Krausz F and Yakovlev V S 2018 Rev. Mod. Phys. 90 021102 [21] Higuchi T, Stockman M I and Hommelhoff P 2014 Phys. Rev. Lett. 113 213901 [22] Mcdonald C R, Vampa G, Corkum P B and Brabec T 2015 Phys. Rev. A 92 033845 [23] Vampa G, Mcdonald C R, Orlando G, Klug D D, Corkum P B and Brabec T 2014 Phys. Rev. Lett. 113 073901 [24] Vampa G, Hammond T J, Thiré N, SchmidT B E, Légaré F, Mcdonald C R, Brabec T and Corkum P B 2015 Nature 522 462 [25] Liu H Z, Li Y L, You Y S, Ghimire S, Heinz T F and Reis D A 2017 Nat. Phys. 13 262 [26] Luu T T and Wörner H J 2018 Nat. Commun. 9 916 [27] Borsch M, Schmid C P, Weigl L, Schlauderer S, Hofmann N, Lange C, Steiner J T, Kock S W, Huber R and Kire M 2020 Science 370 1204 [28] Li J B, Zhang X, Yue S J, Wu H M, Hu B T and Du H C 2017 Opt. Express 25 18603 [29] Jin J Z, Xiao X R, Liang H, Wang M X, Chen S G, Gong Q H and Peng L Y 2018 Phys. Rev. A 97 043420 [30] Mrudul M S, Pattanayak A, Ivanov M and Dixit G 2019 Phys. Rev. A 100 043420 [31] Zhao Y T, Ma S Y, Jiang S C, Yang Y J, Zhao X and Chen J G 2019 Opt. Express 27 34392 [32] Tancogne-dejean N, Mücke O D, Kärtner F X and Rubio A 2017 Nat. Commun. 8 745 [33] Tancogne-dejean N, Mücke O D, Kärtner F X and Rubio A 2017 Phys. Rev. Lett. 118 087403 [34] Floss I, Lemell C, Wachter G, Smejkal V, Sato S A, Tong X M, Yabana K and Burgdörfer J 2018 Phys. Rev. A 97 011401 [35] Lewenstein M, Balcou P, Ivanov M Y, L’huillier A and Corkum P B 1994 Phys. Rev. A 49 2117 [36] L’huillier A, Lewenstein M, Sali`eres P and Balcou P 1993 Phys. Rev. A 48 R3433 [37] Amini K, Biegert J, Calegari F, Chacón A, Ciappina M F, Dauphin A, Efimov D K, Figueira De morisson faria C, Giergiel K, Gniewek P, Landsman A S, Lesiuk M, Mandrysz M, Maxwell A S, Moszyński R, Ortmann L, Antonio Pérez-hernández J, Picón A, Pisanty E, Prauznerbechcicki J, Sacha K, Suárez N, Za¨ır A, Zakrzewski J and Lewenstein M 2019 Rep. Progr. Phys. 82 116001 [38] Qiao Y, Wang N, Jiang S C, Yang Y J, Chen G J and Dorfman K 2024 Phys. Rev. B 110 075201 [39] Hoang V H and Le A T 2020 Phys. Rev. A 102 023112 [40] Han J X, Guan Z, Wang B Y and Jin C 2023 Chin. Phys. B 12 124210 [41] Qiao Y, Huo Y Q, Liang H Q, Chen J G, Liu W J, Yang Y J and Jiang S C 2023 Phys. Rev. B 107 075201 [42] Song Y, Guo F M, Li S Y, Chen J G, Zeng S L and Yang Y J 2012 Phys. Rev. A 86 033424 [43] Huang Y Y, Lai X Y and Liu X J 2018 Chin. Phys. B 27 073204 [44] Li D D, Duan J Q, Lin L and Zhang A 2021 Chaos 31 101101 [45] Lai X Y and Liu X J 2020 Chin. Phys. B 29 013205 [46] Pan X F, Li B, Qi T, Zhang J and Liu X S 2021 Phys. B: At. Mol. Opt. Phys. 54 025601 [47] Song S M, Wu L Y, Qiao Y, Zhou S S, Wang J, Guo F M and Yang Y J 2023 Symmetry 15 581 [48] Song Y, Han S, Yang Y J and Guo F M 2024 Chin. Phys. B 33 123201 [49] Jooya h Z, Telnov D A, Li P C and Chu S H 2015 Phys. Rev. A 91 063412 [50] Song Y, Guo F M, Li S Y, Chen J G, Zeng S L and Yang Y J 2012 Phys. Rev. A 86 033424 [51] Pan X F, Mu H B, Qi D W, Zhang J and Liu X S 2022 Europhys. Lett. 138 45001 [52] Peatross J and Johansen J 2014 Opt. Express 22 576 [53] Xu L and He F 2019 J. Opt. Soc. Am. B 36 840 [54] Guan Z, Zhou X X and Bian X B 2016 Phys. Rev. A 93 033852 [55] Liu Z, Zhao J, Dong W P, Liu J L, Huang Y D and Zhao Z X 2017 Phys. Rev. A 96 053403 [56] Du T Y, Guan Z, Zhou X X and Bian X B 2016 Phys. Rev. A 94 023419 [57] Jia G R, Wang X Q, Du T Y, Huang X H and Bian X B 2018 J. Chem. Phys. 149 154308 [58] Pan X F, Li B, Zhang J and Liu X S 2021 J. Phys. B: At. Mol. Opt. Phys. 54 025601 [59] Chen J Q, JiangWL, Qiao Y, Yang Y J and Chen J G 2025 Chin. Phys. Lett. 42 013201 [60] Qiao Y, Huo Y Q, Jiang S C, Yang Y J and Chen J G 2022 Opt. Express 30 9971 [61] Qiao Y, Chen J Q, Zhou S S, Chen J G, Jiang S C and Yang Y J 2024 Chin. Phys. Lett. 41 014205 [62] Edwards M R, Platonenko V T and Mikhailova J M 2014 Opt. Lett. 24 6823 [63] Feng L Q and Chu T S 2012 J. Electron Spectrosc. Relat. Phenom. 185 39 [64] Peng D, Pi L W, Frolov M V and Starace A F 2017 Phys. Rev. A 95 033413 [65] Frolov M V, Manakov N L, Minina A A, Vvedenskii N V and Slilaev A A 2018 Phys. Rev. Lett. 120 263203 [66] Pattanayak A, Mrudul M S and Dixit G 2020 Phys. Rev. A 101 013404 [67] Mrudul M S, Tancogne-dejean N, Rubio A and Dixit G 2020 npj Comput. Mater. 6 6617 [68] Ge X L, Du H, Wang Q, Guo J and Liu X S 2015 Chin. Phys. B 24 023201s [69] Liu X, Zhu X S, Lan P F, Zhang X F, Wang D, Zhang Q B and Lu P X 2017 Phys. Rev. A 95 063419 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|