| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Tea polyphenol polymer film enables broadband optical modulation for hybrid mode-locked ultrafast fiber lasers |
| Wei Chen(陈伟)1, Kang Li(李康)1, Cheng Gao(高成)1, Qingping Hu(胡庆平)1,†, Zhengfan Li(黎征帆)2, Yi Xiong(熊祎)1, and Yunzhou Sun(孙运周)1,‡ |
1 Research Group of Nonlinear Optical Science and Quantum Technology, Research Center of Nonlinear Science & Hubei Engineering Research Center for Wide Bandgap Semiconductor Materials and Devices, School of Microelectronics, Wuhan Textile University, Wuhan 430200, China; 2 School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China |
|
|
|
|
Abstract Materials exhibiting broadband nonlinear optical responses are critically important for ultrafast photonics applications, particularly as saturable absorbers (SAs) that facilitate broadband optical pulse generation. In this study, tea polyphenol-polyvinyl alcohol (TP-PVA) composite films are synthesized via a polymer embedding method and employed as SAs to initiate ultrafast pulse operation in fiber lasers. The TP-PVA SA film exhibits excellent broadband saturable absorption performance at wavelengths of 1.0 μm, 1.5 μm, and 2.0 μm, with modulation depths of 54.21 %, 41.41 %, and 51.16 %, respectively. Stable passively mode-locked pulses with pulse widths of 588 fs, 419 fs, and 743 fs are generated in Yb-, Er-, and Tm-doped fiber lasers, respectively. This work confirms the effective performance of TP-PVA as a broadband SA, and establishes a foundation for the integration of novel and sustainable materials within ultrafast photonic systems. The approach paves the way for developing compact broadband ultrafast laser systems operating in the near-infrared spectral region.
|
Received: 16 September 2025
Revised: 09 October 2025
Accepted manuscript online: 21 October 2025
|
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
| |
42.55.Wd
|
(Fiber lasers)
|
| |
42.70.Jk
|
(Polymers and organics)
|
| |
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
| Fund: This work was supported by the Opening Foundation of Hubei Key Laboratory for New Textile Materials and Applications Research (Grant No. FZXCL202410), the Key Project of Science and Technology Research Program of Hubei Provincial Department of Education, China (Grant No. D20231704), Wuhan Textile University (Grant No. 523058), and the Foundation of Wuhan Textile University (Grant No. K24058). The authors acknowledge the experimental support provided by the HX-L07 research group of the Institute of Physics, Chinese Academy of Sciences. |
Corresponding Authors:
Qingping Hu, Yunzhou Sun
E-mail: hqp97@wtu.edu.cn;syz@wtu.edu.cn
|
Cite this article:
Wei Chen(陈伟), Kang Li(李康), Cheng Gao(高成), Qingping Hu(胡庆平), Zhengfan Li(黎征帆), Yi Xiong(熊祎), and Yunzhou Sun(孙运周) Tea polyphenol polymer film enables broadband optical modulation for hybrid mode-locked ultrafast fiber lasers 2026 Chin. Phys. B 35 024209
|
[1] Fu B, Sun J, Cheng Y, Ouyang H, Compagnini G, Yin P, Wei S, Li S, Li D, Scardaci V and Zhang H 2021 Adv. Funct. Mater. 31 2107363 [2] Zhang Y,Wu K, Guang Z, Guo B, Qiao D,Wei Z, Yang H,Wang Q, Li K, Copner N and Li X 2024 Laser Photonics Rev. 18 2300786 [3] Yan Y, Zhang H, Liu X, Peng L, Zhang Q, Yu G, Wu Q and Li H 2025 Laser Photonics Rev. 19 2400624 [4] Liu W, Pang L, Han H, Liu M, Lei M, Fang S, Teng H and Wei Z 2017 Opt. Express 25 2950 [5] Liu J, Yang F, Lu J, Ye S, Guo H, Nie H, Zhang J, He J, Zhang B and Ni Z 2022 Nat. Commun. 13 3855 [6] Sharp R C, Spock D E, Pan N and Elliot J 1996 Opt. Lett. 21 881 [7] Qin Z, Chai X, Xie G, Xu Z, Zhou Y, Wu Q, Li J, Wang Z, Weng Y, Hai T, Yuan P, Ma J, Chen J and Qian L 2022 Opt. Lett. 47 890 [8] Zhang M, Kelleher E J R, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A C, Popov S V and Taylor J R 2012 Opt. Express 20 25077 [9] Solodyankin M A, Obraztsova E D, Lobach A S, Chernov A I, Tausenev A V, Konov V I and Dianov E M 2008 Opt. Lett. 33 1336 [10] Arenal R and Lopez-Bezanilla A 2015 WIREs Comput. Mol. Sci. 5 299 [11] Liu M, Wu H, Liu X, Wang Y, Lei M, Liu W, Guo W and Wei Z 2021 Opto-Electron. Adv. 4 200029 [12] LiuW, Xiong X, Liu M, Xing X, Chen H, Ye H, Han J andWei Z 2022 Appl. Phys. Lett. 120 053108 [13] Xing X, Liu Y, Han J, Liu W and Wei Z 2023 ACS Photonics 10 2264 [14] Jiang Y, Xing X, Zhu P, Wang K, Zhang Z, Liu Q, Wang Z, Liu W, Zhou J and Han J 2024 J. Phys. Chem. Lett. 15 11419 [15] Li L, Pang L, Wang R, Zhang X, Hui Z, Han D, Zhao F and Liu W 2022 Laser Photonics Rev. 16 2100255 [16] Lau K, Liu X and Qiu J 2022 Laser Photonics Rev. 16 2100709 [17] Zhang Q, Jin X, Hu G, Zhang M, Zheng Z and Hasan T 2020 Opt. Express 28 34104 [18] Guo B, Xiao Q, Wang S and Zhang H 2019 Laser Photonics Rev. 13 1800327 [19] Jiang T, Yin K, Wang C, You J, Ouyang H, Miao R, Zhang C, Wei K, Li H, Chen H, Zhang R, Zheng X, Xu Z, Cheng X and Zhang H 2020 Photonics Res. 8 78 [20] Khan K, Tareen A K, Aslam M, Wang R, Zhang Y, Mahmood A, Ouyang Z, Zhang H and Guo Z 2020 J. Mater. Chem. C 8 387 [21] Li L, Cheng J, Zhao Q, Zhang J, Yang H, Zhang Y, Hui Z, Zhao F and Liu W 2023 Opt. Express 31 16872 [22] Ren L, Si Z, Liu J, Sun H, Dai C, Sun H and Wang Y 2025 ACS Appl. Mater. Interfaces 17 3785 [23] Rashmi M, Indira J, Sarojini B K, Mohan B J, Joe I H and Aswathy P 2021 Opt. Laser Technol. 139 106902 [24] Zhang C, Li X, Wang Y, An M and Sun Z 2021 J. Mater. Chem. C 9 11306 [25] Al-Hiti A S, Tiu Z C, Yasin M and Harun SW2022 Sci. Rep. 12 13288 [26] Zhang C, Li X, Chen E, Liu H, Shum P P and Chen X H 2022 Opt. Laser Technol. 151 108016 [27] Salam S, Azooz S M, Nizamani B, Zhang P, Al-Masoodi A H H, Mukhtar Diblawe A, Yasin M and Harun S W 2023 Infrared Phys. Technol. 131 104637 [28] Johnson V and Gandhiraj V 2024 Opt. Mater. 148 114824 [29] Ramírez-Colón J L, Santiago-Maldonado X, Laboy-López S, Méndez Fernández P O, Torres-Díaz M, Lasalde-Ramírez J A, Díaz-Vázquez L M and Nicolau E 2022 ACS Omega 7 2774 [30] Marchese E, Gallo CantafioME, Ambrosio F A, Torcasio R, Valentino I, Trapasso F, Viglietto G, Alcaro S, Costa G and Amodio N 2023 Pharmaceuticals 16 1712 [31] Al-Hiti A S, Al-Masoodi A H H, YasinMand Harun SW2020 Infrared Phys. Technol. 111 103548 [32] Ahmed S, Qiao J, Cheng P K, Saleque A M, Ivan M N A S, Alam T I and Tsang Y H 2021 ACS Appl. Mater. Interfaces 13 61518 [33] Wu K, Chen B, Zhang X, Zhang S, Guo C, Li C, Xiao P, Wang J, Zhou L, Zou W and Chen J 2018 Opt. Commun. 406 214 [34] Jackson S D and King T A 1998 Opt. Lett. 23 1462 [35] Luo Z, Li Y, Zhong M, Huang Y, Wan X, Peng J and Weng J 2015 Photonics Res. 3 A79 [36] Wu Q, Peng L, Zhao J, Sun K, Chen S and HuangW2025 Mater. Today Phys. 52 101678 [37] Asghar M, Younes M H, Hayat Q, Noor A, Alrebdi T A and Asghar H 2025 Chaos Solitons Fractals 196 116395 [38] Pang L, Jiang L, Zhao M, Zhang J, Zhao Q, Li L, Wu R, Lv Y and Liu W 2025 J. Mater. Sci. Technol. 223 208 [39] Li L, Xue Z, Pang L, Xiao X, Yang H, Zhang J, Zhang Y, Zhao Q and Liu W 2024 Opt. Lett. 49 1293 [40] Chen Y, Wu Z, Xiao P, Xiao W and Liu W 2024 Opt. Lett. 49 2437 [41] Meng X C, Li L, Sun N Z, Xue Z, Liu Q, Ye H and LiuWJ 2023 Chin. Phys. Lett. 40 124202 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|