Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 024209    DOI: 10.1088/1674-1056/ae156e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tea polyphenol polymer film enables broadband optical modulation for hybrid mode-locked ultrafast fiber lasers

Wei Chen(陈伟)1, Kang Li(李康)1, Cheng Gao(高成)1, Qingping Hu(胡庆平)1,†, Zhengfan Li(黎征帆)2, Yi Xiong(熊祎)1, and Yunzhou Sun(孙运周)1,‡
1 Research Group of Nonlinear Optical Science and Quantum Technology, Research Center of Nonlinear Science & Hubei Engineering Research Center for Wide Bandgap Semiconductor Materials and Devices, School of Microelectronics, Wuhan Textile University, Wuhan 430200, China;
2 School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
Abstract  Materials exhibiting broadband nonlinear optical responses are critically important for ultrafast photonics applications, particularly as saturable absorbers (SAs) that facilitate broadband optical pulse generation. In this study, tea polyphenol-polyvinyl alcohol (TP-PVA) composite films are synthesized via a polymer embedding method and employed as SAs to initiate ultrafast pulse operation in fiber lasers. The TP-PVA SA film exhibits excellent broadband saturable absorption performance at wavelengths of 1.0 μm, 1.5 μm, and 2.0 μm, with modulation depths of 54.21 %, 41.41 %, and 51.16 %, respectively. Stable passively mode-locked pulses with pulse widths of 588 fs, 419 fs, and 743 fs are generated in Yb-, Er-, and Tm-doped fiber lasers, respectively. This work confirms the effective performance of TP-PVA as a broadband SA, and establishes a foundation for the integration of novel and sustainable materials within ultrafast photonic systems. The approach paves the way for developing compact broadband ultrafast laser systems operating in the near-infrared spectral region.
Keywords:  ultrafast fiber lasers      saturable absorbers      broadband modulators      natural dyes      tea polyphenol  
Received:  16 September 2025      Revised:  09 October 2025      Accepted manuscript online:  21 October 2025
PACS:  42.65.-k (Nonlinear optics)  
  42.55.Wd (Fiber lasers)  
  42.70.Jk (Polymers and organics)  
  42.60.Fc (Modulation, tuning, and mode locking)  
Fund: This work was supported by the Opening Foundation of Hubei Key Laboratory for New Textile Materials and Applications Research (Grant No. FZXCL202410), the Key Project of Science and Technology Research Program of Hubei Provincial Department of Education, China (Grant No. D20231704), Wuhan Textile University (Grant No. 523058), and the Foundation of Wuhan Textile University (Grant No. K24058). The authors acknowledge the experimental support provided by the HX-L07 research group of the Institute of Physics, Chinese Academy of Sciences.
Corresponding Authors:  Qingping Hu, Yunzhou Sun     E-mail:  hqp97@wtu.edu.cn;syz@wtu.edu.cn

Cite this article: 

Wei Chen(陈伟), Kang Li(李康), Cheng Gao(高成), Qingping Hu(胡庆平), Zhengfan Li(黎征帆), Yi Xiong(熊祎), and Yunzhou Sun(孙运周) Tea polyphenol polymer film enables broadband optical modulation for hybrid mode-locked ultrafast fiber lasers 2026 Chin. Phys. B 35 024209

[1] Fu B, Sun J, Cheng Y, Ouyang H, Compagnini G, Yin P, Wei S, Li S, Li D, Scardaci V and Zhang H 2021 Adv. Funct. Mater. 31 2107363
[2] Zhang Y,Wu K, Guang Z, Guo B, Qiao D,Wei Z, Yang H,Wang Q, Li K, Copner N and Li X 2024 Laser Photonics Rev. 18 2300786
[3] Yan Y, Zhang H, Liu X, Peng L, Zhang Q, Yu G, Wu Q and Li H 2025 Laser Photonics Rev. 19 2400624
[4] Liu W, Pang L, Han H, Liu M, Lei M, Fang S, Teng H and Wei Z 2017 Opt. Express 25 2950
[5] Liu J, Yang F, Lu J, Ye S, Guo H, Nie H, Zhang J, He J, Zhang B and Ni Z 2022 Nat. Commun. 13 3855
[6] Sharp R C, Spock D E, Pan N and Elliot J 1996 Opt. Lett. 21 881
[7] Qin Z, Chai X, Xie G, Xu Z, Zhou Y, Wu Q, Li J, Wang Z, Weng Y, Hai T, Yuan P, Ma J, Chen J and Qian L 2022 Opt. Lett. 47 890
[8] Zhang M, Kelleher E J R, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A C, Popov S V and Taylor J R 2012 Opt. Express 20 25077
[9] Solodyankin M A, Obraztsova E D, Lobach A S, Chernov A I, Tausenev A V, Konov V I and Dianov E M 2008 Opt. Lett. 33 1336
[10] Arenal R and Lopez-Bezanilla A 2015 WIREs Comput. Mol. Sci. 5 299
[11] Liu M, Wu H, Liu X, Wang Y, Lei M, Liu W, Guo W and Wei Z 2021 Opto-Electron. Adv. 4 200029
[12] LiuW, Xiong X, Liu M, Xing X, Chen H, Ye H, Han J andWei Z 2022 Appl. Phys. Lett. 120 053108
[13] Xing X, Liu Y, Han J, Liu W and Wei Z 2023 ACS Photonics 10 2264
[14] Jiang Y, Xing X, Zhu P, Wang K, Zhang Z, Liu Q, Wang Z, Liu W, Zhou J and Han J 2024 J. Phys. Chem. Lett. 15 11419
[15] Li L, Pang L, Wang R, Zhang X, Hui Z, Han D, Zhao F and Liu W 2022 Laser Photonics Rev. 16 2100255
[16] Lau K, Liu X and Qiu J 2022 Laser Photonics Rev. 16 2100709
[17] Zhang Q, Jin X, Hu G, Zhang M, Zheng Z and Hasan T 2020 Opt. Express 28 34104
[18] Guo B, Xiao Q, Wang S and Zhang H 2019 Laser Photonics Rev. 13 1800327
[19] Jiang T, Yin K, Wang C, You J, Ouyang H, Miao R, Zhang C, Wei K, Li H, Chen H, Zhang R, Zheng X, Xu Z, Cheng X and Zhang H 2020 Photonics Res. 8 78
[20] Khan K, Tareen A K, Aslam M, Wang R, Zhang Y, Mahmood A, Ouyang Z, Zhang H and Guo Z 2020 J. Mater. Chem. C 8 387
[21] Li L, Cheng J, Zhao Q, Zhang J, Yang H, Zhang Y, Hui Z, Zhao F and Liu W 2023 Opt. Express 31 16872
[22] Ren L, Si Z, Liu J, Sun H, Dai C, Sun H and Wang Y 2025 ACS Appl. Mater. Interfaces 17 3785
[23] Rashmi M, Indira J, Sarojini B K, Mohan B J, Joe I H and Aswathy P 2021 Opt. Laser Technol. 139 106902
[24] Zhang C, Li X, Wang Y, An M and Sun Z 2021 J. Mater. Chem. C 9 11306
[25] Al-Hiti A S, Tiu Z C, Yasin M and Harun SW2022 Sci. Rep. 12 13288
[26] Zhang C, Li X, Chen E, Liu H, Shum P P and Chen X H 2022 Opt. Laser Technol. 151 108016
[27] Salam S, Azooz S M, Nizamani B, Zhang P, Al-Masoodi A H H, Mukhtar Diblawe A, Yasin M and Harun S W 2023 Infrared Phys. Technol. 131 104637
[28] Johnson V and Gandhiraj V 2024 Opt. Mater. 148 114824
[29] Ramírez-Colón J L, Santiago-Maldonado X, Laboy-López S, Méndez Fernández P O, Torres-Díaz M, Lasalde-Ramírez J A, Díaz-Vázquez L M and Nicolau E 2022 ACS Omega 7 2774
[30] Marchese E, Gallo CantafioME, Ambrosio F A, Torcasio R, Valentino I, Trapasso F, Viglietto G, Alcaro S, Costa G and Amodio N 2023 Pharmaceuticals 16 1712
[31] Al-Hiti A S, Al-Masoodi A H H, YasinMand Harun SW2020 Infrared Phys. Technol. 111 103548
[32] Ahmed S, Qiao J, Cheng P K, Saleque A M, Ivan M N A S, Alam T I and Tsang Y H 2021 ACS Appl. Mater. Interfaces 13 61518
[33] Wu K, Chen B, Zhang X, Zhang S, Guo C, Li C, Xiao P, Wang J, Zhou L, Zou W and Chen J 2018 Opt. Commun. 406 214
[34] Jackson S D and King T A 1998 Opt. Lett. 23 1462
[35] Luo Z, Li Y, Zhong M, Huang Y, Wan X, Peng J and Weng J 2015 Photonics Res. 3 A79
[36] Wu Q, Peng L, Zhao J, Sun K, Chen S and HuangW2025 Mater. Today Phys. 52 101678
[37] Asghar M, Younes M H, Hayat Q, Noor A, Alrebdi T A and Asghar H 2025 Chaos Solitons Fractals 196 116395
[38] Pang L, Jiang L, Zhao M, Zhang J, Zhao Q, Li L, Wu R, Lv Y and Liu W 2025 J. Mater. Sci. Technol. 223 208
[39] Li L, Xue Z, Pang L, Xiao X, Yang H, Zhang J, Zhang Y, Zhao Q and Liu W 2024 Opt. Lett. 49 1293
[40] Chen Y, Wu Z, Xiao P, Xiao W and Liu W 2024 Opt. Lett. 49 2437
[41] Meng X C, Li L, Sun N Z, Xue Z, Liu Q, Ye H and LiuWJ 2023 Chin. Phys. Lett. 40 124202
[1] Synchronized dual-wavelength mode-locked laser in normal dispersion regime
Yangrui Shi(史洋瑞), Haojing Zhang(张皓景), Yuxuan Ren(任俞宣), Junsong Peng(彭俊松), and Heping Zeng(曾和平). Chin. Phys. B, 2025, 34(9): 094207.
[2] Theoretical and computational feasibility of femtosecond laser multifilament transverse structures reconstruction via circular-scanning-based photoacoustic tomography
Qingwei Zeng(曾庆伟), Lei Liu(刘磊), Shuai Hu(胡帅), and Shulei Li(李书磊). Chin. Phys. B, 2025, 34(9): 094209.
[3] Strain modulation of second harmonic generation in new tetrahedral transition metal dichalcogenide monolayers
Hu Chen(陈虎), Shi-Qi Li(李仕琪), Yuqing Wu(吴雨晴), Xiaozhendong Bao(鲍晓振东), Zhijie Lei(雷志杰), Hongsheng Liu(柳洪盛), Yuee Xie(谢月娥), Junfeng Gao(高峻峰), Yuanping Chen(陈元平), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2025, 34(8): 084206.
[4] Simultaneous second and third harmonics generation in periodically poled lithium niobate: Coupling and competition
Junming Liu(刘峻铭), Liqiang Liu(刘励强), Lihong Hong(洪丽红), and Zhiyuan Li(李志远). Chin. Phys. B, 2025, 34(8): 084203.
[5] Real-time observations of the transition dynamics between multiple nonlinear states in a coherently driven Kerr fiber-loop resonator
Yayu Cao(曹亚昱), Heng Dong(董恒), and Xiankun Yao(姚献坤). Chin. Phys. B, 2025, 34(7): 074206.
[6] Reconfigurable microring resonators for multipurpose quantum light sources
Yuxing Du(杜昱星), Yingwen Liu(刘英文), Chao Wu(吴超), Pingyu Zhu(朱枰谕), Chang Zhao(赵畅), Miaomiao Yu(余苗苗), Yan Wang(王焱), Kaikai Zhang(张凯凯), and Ping Xu(徐平). Chin. Phys. B, 2025, 34(7): 074207.
[7] Enhancement of four-wave mixing due to coherent hole burning in a degenerate two-level system
Zhi-Yuan Liu(刘知远), Yi-Fan Yao(姚一凡), Yue Sun(孙悦), Jia-Yu Han(韩佳瑜), and Ying-Jie Du(杜英杰). Chin. Phys. B, 2025, 34(5): 054203.
[8] Nonreciprocal microwave-optical entanglement in Kerr-modified cavity optomagnomechanics
Ming-Yue Liu(刘明月), Yuan Gong(龚媛), Jiaojiao Chen(陈姣姣), Yan-Wei Wang(王艳伟), and Wei Xiong(熊伟). Chin. Phys. B, 2025, 34(5): 057202.
[9] Nonlinear Raman-Nath diffraction of inclined femtosecond laser by periodically poled lithium niobate nonlinear grating
Jiacheng Li(李嘉诚), Lihong Hong(洪丽红), Yu Zou(邹娱), Jianluo Chen(陈健洛), and Zhi-Yuan Li(李志远). Chin. Phys. B, 2025, 34(5): 054205.
[10] Four-wave mixing Bragg scattering for small frequency shift from silicon coupled microrings
Chang Zhao(赵畅), Chao Wu(吴超), Pingyu Zhu(朱枰谕), Yuxing Du(杜昱星), Yan Wang(王焱), Miaomiao Yu(余苗苗), Kaikai Zhang(张凯凯), and Ping Xu(徐平). Chin. Phys. B, 2025, 34(1): 014206.
[11] Generation of broadband polarization-orthogonal photon pairs via the dispersion-engineered thin-film lithium niobate waveguide
Ji-Ning Zhang(张继宁), Tong-Yu Zhang(张同宇), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2024, 33(11): 110301.
[12] Broadband third-order optical nonlinearities of layered franckeite towards mid-infrared regime
Zhi-Qiang Xu(徐志强), Tian-Tian Zhou(周甜甜), Jie Li(李洁), Dong-Yang Liu(刘东阳), Yuan He(何源), Ning Li(李宁), Xiao Liu(刘潇), Li-Li Miao(缪丽丽), Chu-Jun Zhao(赵楚军), and Shuang-Chun Wen(文双春). Chin. Phys. B, 2024, 33(10): 104208.
[13] On-chip quantum NOON state sensing for temperature and humidity
Weihong Luo(罗伟宏), Chao Wu(吴超), Yuxing Du(杜昱星), Chang Zhao(赵畅), Miaomiao Yu(余苗苗), Pingyu Zhu(朱枰谕), Kaikai Zhang(张凯凯), and Ping Xu(徐平). Chin. Phys. B, 2024, 33(10): 100305.
[14] Enhanced picosecond terahertz wave generation based on cascade effects in a terahertz parametric generator
Jingxi Zhang(张敬喜), Yuye Wang(王与烨), Bingfeng Xu(徐炳烽), Kai Chen(陈锴), Zikun Liu(刘紫鲲), Hongru Ma(马鸿儒), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2024, 33(8): 084203.
[15] Dissipative soliton resonance within different dispersion regimes in a single mode-locked laser
Zhetao Zhao(赵哲韬), Qinke Shu(舒沁珂), Ziyi Xie(解梓怡), Yuxuan Ren(任俞宣), Ying Zhang(张颖), Bo Yuan(袁博), Chunbo Zhao(赵春勃), Junsong Peng(彭俊松), and Heping Zeng(曾和平). Chin. Phys. B, 2024, 33(7): 074208.
No Suggested Reading articles found!