|
|
Direct loading of atoms from a macroscopic quadrupole magnetic trap into a microchip trap |
Jun Cheng(程俊)1,2, Jing-fang Zhang(张敬芳)1, Xin-ping Xu(许忻平)1, Hai-chao Zhang(张海潮)1, Yu-zhu Wang(王育竹)1 |
1 Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We demonstrate the direct loading of cold atoms into a microchip 2-mm Z-trap, where the evaporative cooling can be performed efficiently, from a macroscopic quadrupole magnetic trap with a high loading efficiency. The macroscopic quadrupole magnetic trap potential is designed to be moveable by controlling the currents of the two pairs of anti-Helmholtz coils. The cold atoms are initially prepared in a standard six-beam magneto-optical trap and loaded into the macroscopic quadrupole magnetic trap, and then transported to the atom chip surface by moving the macroscopic trap potential. By means of a three-dimensional absorption imaging system, we are able to optimize the position alignment of the atom cloud in the macroscopic trap and the microchip Z-shaped wire. Consequently, with a proper magnetic transfer scheme, we load the cold atoms into the microchip Z-trap directly and efficiently. The loading efficiency is measured to be about 50%. This approach can be used to generate appropriate ultracold atoms sources, for example, for a magnetically guided atom interferometer based on atom chip.
|
Received: 23 June 2016
Revised: 14 December 2016
Accepted manuscript online:
|
PACS:
|
37.10.Gh
|
(Atom traps and guides)
|
|
37.10.Vz
|
(Mechanical effects of light on atoms, molecules, and ions)
|
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604348). |
Corresponding Authors:
Hai-chao Zhang, Yu-zhu Wang
E-mail: zhanghc@siom.ac.cn;yzwang@mail.shcnc.ac.cn
|
Cite this article:
Jun Cheng(程俊), Jing-fang Zhang(张敬芳), Xin-ping Xu(许忻平), Hai-chao Zhang(张海潮), Yu-zhu Wang(王育竹) Direct loading of atoms from a macroscopic quadrupole magnetic trap into a microchip trap 2017 Chin. Phys. B 26 033701
|
[1] |
Reichel J, Hänsel W and Hänsch T W 1999 Phys. Rev. Lett. 83 3398
|
[2] |
Feenstra L, Andersson L M and Schmiedmayer J 2004 Gen. Relat. Gravit. 36 2317
|
[3] |
Folman R, Kruger P, Cassettari D, Hessmo B, Maier T and Schmiedmayer J 2000 Phys. Rev. Lett. 84 4749
|
[4] |
Reichel J, Hänsel W, Hommelhoff P and Hänsch T W 2001 Appl. Phys. B: Lasers Opt. 72 81
|
[5] |
Weinstein J D and Libbrecht K G 1995 Phys. Rev. A 52 4004
|
[6] |
Reichel J 2002 Appl. Phys. B: Lasers Opt. 74 469
|
[7] |
Dekker N H, Lee C S, Lorent V V, Thywissen J H, Smith S P, Drndic M, Westervelt R M and Prentiss M 2000 Phys. Rev. Lett. 84 1124
|
[8] |
Hänsel W, Reichel J, Hommelhoff P and Hänsch T W 2001 Phys. Rev. Lett. 86 608
|
[9] |
Hänsel W, Hommelhoff P, Hänsch T W and Reichel J 2001 Nature 413 498
|
[10] |
Ott H, Fortagh J, Schlotterbeck G, Grossmann A and Zimmermann C 2001 Phys. Rev. Lett. 87 230401
|
[11] |
Du S W and Oh E 2009 Phys. Rev. A 79 013407
|
[12] |
Maineult W, Deutsch C, Gibble K, Reichel J and Rosenbusch P 2012 Phys. Rev. Lett. 109 020407
|
[13] |
Wang Y J, et al. 2005 Phys. Rev. Lett. 94 090405
|
[14] |
Abend S, et al. 2016 Phys. Rev. Lett. 117 203003
|
[15] |
Horikoshi M and Nakagawa K 2006 Appl. Phys. B 82 363
|
[16] |
Lin Y J, Teper I, Chin C and Vuletic V 2004 Phys. Rev. Lett. 92 050404
|
[17] |
Jones M P A, Vale C J, Sahagun D, Hall B V, Eberlein C C, Sauer B E, Furusawa K, Richardson D and Hinds E A 2004 J. Phys. B: At. Mol. Opt. Phys. 37 15
|
[18] |
Aigner S, Della Pietra L, Japha Y, Entin-Wohlman O, David T, Salem R, Folman R and Schmiedmayer J 2008 Science 319 1226
|
[19] |
Jian B and van Wijngaarden W A 2013 J. Opt. Soc. Am. B 30 238
|
[20] |
Farkas D M, Hudek K M, Salim E A, Segal S R, Squires M B and Anderson D Z 2010 Appl. Phys. Lett. 96 093102
|
[21] |
Du S, Squires M B, Imai Y, Czaia L, Saravanan R A, Bright V, Reichel J, Hänsch T W and Anderson D Z 2004 Phys. Rev. A 70 053606
|
[22] |
Yan B, Cheng F, Ke M, Li X L, Tang J Y and Wang Y Z 2009 Chin. Phys. B 18 4259
|
[23] |
Cheng J, Xu X, Zhang J, Chen Y, Zhang H and Wang Y 2016 Acta Opt. Sin. 36 1202001 (in Chinese)
|
[24] |
Jiang X J, Li X L, Xu X P, Zhang H C and Wang Y Z 2015 Chin. Phys. Lett. 32 020301
|
[25] |
Wu S, Su E and Prentiss M 2007 Phys. Rev. Lett. 99 173201
|
[26] |
Han J S, Xu X P, Zhang H C and Wang Y Z 2013 Chin. Phys. B 22 023702
|
[27] |
Gao K Y, Luo X Y, Jia F D, Yu C H, Zhang F, Yin J P, Xu L, You L and Wang R Q 2014 Chin. Phys. Lett. 31 063701
|
[28] |
Zhang F, Long Y, Yang J L, Ma G Q, Yin J P and Wang R Q 2015 Chin. Phys. Lett. 32 123701
|
[29] |
Klempt C, van Zoest T, Henninger T, Topic O, Rasel E, Ertmer W and Arlt J 2006 Phys. Rev. A 73 013410
|
[30] |
Torralbo-Campo L, Bruce G D, Smirne G and Cassettari D 2015 Sci. Rep. 5 14729
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|