Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 063701    DOI: 10.1088/1674-1056/24/6/063701
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Conditions for formation and trapping of the two-ion Coulomb cluster in the dissipative optical superlattice

I. V. Krasnov
Institute of Computational Modeling, Siberian Division, Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
Abstract  

Conditions have been studied under which a polychromatic optical superlattice can form and trap the Coulomb cluster of two strongly interacting ions. In our previous work (Krasnov I V and Kamenshchikov L P 2014 Opt. Comm. 312 192) this new all-optical method of obtaining and confining the Coulomb clusters was demonstrated by numerical simulations for special values of the optical superlattice parameters and in the case of Yb ions. In the present paper the conditions are explicitly formulated, under which the long-lived two-ion cluster in the superlattice cell is formed. The peculiarity of these conditions is the renormalization of the ion–ion Coulomb interaction. Notably, the renormalized Coulomb force is determined by the effective charge which depends on the light field parameters and can strongly differ from the “bare” ion charge. This result can be accounted for by the combined manifestation of the quantum fluctuations of optical forces, nonlinear dependence of these forces on the velocity, and non-Maxwellian (Tsallis type) velocity distribution of the ions in the optical superlattice. Explicit analytical formulas are also obtained for the parameters of the optical two-ion cluster.

Keywords:  optical trap      ion trap      rectified gradient force      Coulomb clusters  
Received:  24 November 2014      Revised:  08 January 2015      Accepted manuscript online: 
PACS:  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
  37.10.Ty (Ion trapping)  
  37.10.Rs (Ion cooling)  
Corresponding Authors:  I. V. Krasnov     E-mail:  krasn@icm.krasn.ru
About author:  37.10.Vz; 37.10.Ty; 37.10.Rs

Cite this article: 

I. V. Krasnov Conditions for formation and trapping of the two-ion Coulomb cluster in the dissipative optical superlattice 2015 Chin. Phys. B 24 063701

[1] Kazantsev A P, Surdutovich G I and Yakovlev V P 1990 Mechanical Effect of Light on Atoms (Singapore: World Scientific)
[2] Metcalf H J and van der Straten P 2002 Laser Cooling and Trapping (New York: Springer)
[3] Schneider C, Enderlein M, Huber T and Schaetz T 2010 Nat. Photon. 4 772
[4] Krasnov I V and Kamenshchikov L P 2014 Opt. Commun. 312 192
[5] Grynberg G and Robiliard C 2001 Phys. Rep. 355 335
[6] Zhou M, Chen N, Zhang X H, Huang L Y, Yao M F, Tian J, Gao Q, Jiang H L, Tang H Y and Xu X Y 2013 Chin. Phys. B 22 103701
[7] Lu J F, Zhou Q, Pan X Q and Yin J P 2013 Acta Phys. Sin. 62 233701 (in Chinese)
[8] Krasnov I V 2009 Phys. Lett. A 373 2291
[9] Krasnov I V 2011 Phys. Lett. A 375 2471
[10] Kazantsev A P and Krasnov I V 1989 J. Opt. Soc. Am. B6 2140
[11] Grimm R, Ovchinnikov Y B, Sidorov A I and Letochov V S 1990 Phys. Rev. Lett. 65 1415
[12] Krasnov I V 2004 JETP 98 888
[13] Kazantsev A P 1978 Sov. Phys. Usp. 21 58
[14] Krasnov I V 1994 Laser Physics 4 906
[15] Lutz E and Renzoni F 2013 Nat. Phys. 9 615
[16] Cook R G 1980 Phys. Rev. A 21 268
[17] Stenholm S 1986 Rev. Mod. Phys. 58 699
[18] Minogin V G and Letochov V S 1987 Laser Light Pressure on Atoms (New York: Gordon and Breach)
[19] Gardiner C W 2004 Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 3rd edn. (Springer Series in Synergetics, Vol. 13) (Berlin: Springer-Verlag) ISBN 3-540-20882-8
[20] Murphy T J and Aguirre J L 1972 J. Chem. Phys. 57 2098
[21] Bocquet L 1997 Am. J. Phys. 65 140
[22] van Kampen N G 1984 Stochastic Processes in Physics and Chemistry (Amsterdam: North-Holland Physics Publishing)
[1] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[2] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[3] Numerical analysis of motional mode coupling of sympathetically cooled two-ion crystals
Li-Jun Du(杜丽军), Yan-Song Meng(蒙艳松), Yu-Ling He(贺玉玲), and Jun Xie(谢军). Chin. Phys. B, 2021, 30(7): 073702.
[4] Setup of a dipole trap for all-optical trapping
Miao Wang(王淼), Zheng Chen(陈正), Yao Huang(黄垚), Hua Guan(管桦), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(5): 053702.
[5] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[6] Accurate electron affinity of atomic cerium and excited states of its anion
Xiao-Xi Fu(付筱茜), Ru-Lin Tang(唐如麟), Yu-Zhu Lu(陆禹竹), Chuan-Gang Ning(宁传刚). Chin. Phys. B, 2020, 29(7): 073201.
[7] Constraint dependence of average potential energy of a passive particle in an active bath
Simin Ye(叶思敏), Peng Liu(刘鹏), Zixuan Wei(魏子轩), Fangfu Ye(叶方富), Mingcheng Yang(杨明成), Ke Chen(陈科). Chin. Phys. B, 2020, 29(5): 058201.
[8] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[9] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[10] Numerical study of optical trapping properties of nanoparticle on metallic film with periodic structure
Cheng-Xian Ge(葛城显), Zhen-Sen Wu(吴振森), Jing Bai(白靖), Lei Gong(巩蕾). Chin. Phys. B, 2019, 28(2): 024203.
[11] Optimization of endcap trap for single-ion manipulation
Yuan Qian(钱源), Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Ke-Lin Gao(高克林). Chin. Phys. B, 2018, 27(6): 063701.
[12] Microparticle collection for water purification based on laser-induced convection
Zhi-Hai Liu(刘志海), Jiao-Jie Lei(雷皎洁), Yu Zhang(张羽), Ya-Xun Zhang(张亚勋), Xing-Hua Yang(杨兴华), Jian-Zhong Zhang(张建中), Yun Yang(杨军), Li-Bo Yuan(苑立波). Chin. Phys. B, 2018, 27(5): 054209.
[13] Theoretical analysis of suppressing Dick effect in Ramsey-CPT atomic clock by interleaving lock
Xiao-Lin Sun(孙晓林), Jian-Wei Zhang(张建伟), Peng-Fei Cheng(程鹏飞), Ya-Ni Zuo(左娅妮), Li-Jun Wang(王力军). Chin. Phys. B, 2018, 27(2): 023101.
[14] Determining spatial structures of ion crystals by simulated annealing method
Wen-Bo Wu(武文博), Chun-Wang Wu(吴春旺), Jian Li(李剑), Bao-Quan Ou(欧保全), Yi Xie(谢艺), Wei Wu(吴伟), Ping-Xing Chen(陈平形). Chin. Phys. B, 2017, 26(8): 080303.
[15] Investigation of the nonlinear CPT spectrum of 87Rb and its application for large dynamic magnetic measurement
Chi Xu(徐迟), Shi-Guang Wang(王时光), Yong Hu(胡勇), Yan-Ying Feng(冯焱颖), Li-Jun Wang(王力军). Chin. Phys. B, 2017, 26(6): 064203.
No Suggested Reading articles found!