Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 033202    DOI: 10.1088/1674-1056/ad10fc
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical investigations of population trapping phenomena in atomic four-color, three-step photoionization scheme

Xiao-Yong Lu(卢肖勇)1,† and Ya-Peng Sun(孙亚鹏)1,2
1 Science and Technology on Particle Transport and Separation Laboratory, Tianjin 300180, China;
2 Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Abstract  The four-color three-step selective photoionization process of atom is very important in laser isotope separation technology. The population trapping phenomena and their influences are studied theoretically in monochromatic and non-monochromatic laser fields based on the density matrix theory in this work. Time evolutions of the photoionization properties of the four-color, three-step process are given. The population trapping effects occur intensely in monochromatic excitation, while it gradually turns weak as the laser bandwidth increases. The effects of bandwidth, Rabi frequency, time delay, and frequency detuning on the population trapping effect are investigated in monochromatic and non-monochromatic laser fields. The effects of laser process parameters and atomic parameters on the effective selective photoionization are also discussed. The ionization probability and selectivity factors, as evaluation indexes, are difficult to improve synchronously by adjusting systematic parameters. Besides, the existence of metastable state may play a negative role when its population is low enough.
Keywords:  population trapping      metastable state      selective photoionization      laser bandwidth  
Received:  02 September 2023      Revised:  28 November 2023      Accepted manuscript online:  30 November 2023
PACS:  32.80.-t (Photoionization and excitation)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
  32.70.Jz (Line shapes, widths, and shifts)  
Corresponding Authors:  Xiao-Yong Lu     E-mail:  lu-xy15@tsinghua.org.cn

Cite this article: 

Xiao-Yong Lu(卢肖勇) and Ya-Peng Sun(孙亚鹏) Theoretical investigations of population trapping phenomena in atomic four-color, three-step photoionization scheme 2024 Chin. Phys. B 33 033202

[1] Bokhan P A, Buchanov V V, Fateev N V, Kalugin M M, Kazaryan M A, Prokhorov A M and Zakrevskii D E 2006 Laser isotope separation in atomic vapor (John Wiley & Sons) pp. 91-100
[2] Wendt K, Mattolat C, Gottwald T, Kron T, Raeder S, Rothe S, Schwellnus F and Tomita H 2013 Phys. Rev. A 88 052510
[3] Nakhate S G, Bhattacharyya S, Mukund S, Behera R, Pradhan S, Bhatia M S, Datar V M, Nanal V, Pillay R G and Wategaonkar S J 2019 Appl. Phys. B 125 23
[4] Saleem M, Hussain S, Rafiq M and Baig M A 2006 J. Appl. Phys. 100 053111
[5] Pratt S T 1995 Rep. Prog. Phys. 58 821
[6] Sun Y N, Wang Y H, Song L L, Du H B, Wang X C, He L H, Luo S Z, Yang Q, Leng J and Liu F C 2020 Chin. Phys. B 29 093201
[7] Schleier D, Constantinidis P, Faβheber N, Fischer I, Friedrichs G, Hemberger P, Reusch E, Sztáray B and Voronova K 2018 Phys. Chem. Chem. Phys. 20 10721
[8] Park H, Kwon D H, Cha Y H, Kim T S, Han J, Ko K H, Jeong D Y and Kim C J 2008 J. Nucl. Sci. Technol. 45 111
[9] D'yachkov A B, Gorkunov A A, Labozin A V, Makoveeva K A, Mironov S M, Firsov V A, Tsvetkov G O and Panchenko V Y 2021 Quantum Electron. 51 317
[10] Sankari M and Suryanarayana M V 2015 J. Nucl. Eng. Radiat. Sci. 1 041017
[11] Gomonai A, Kelman V and Plekan O 2003 Radiat. Phys. Chem. 68 137
[12] Saini V K, Talwar S, Subrahmanyam V V, Mishra R K, Saini P K and Dixit S K 2020 Phys. Scr. 95 075403
[13] Suryanarayana M V 2023 Sci. Rep. 13 7001
[14] D'yachkov A B, Gorkunov A A, Labozin A V, Mironov S M, Panchenko V Y and Firsov V A 2016 Quantum Electron. 46 574
[15] Park S J and Kim J B 2020 Hyperfine Interact. 241 1
[16] Ning X J, Lin F C and Jing C M 1998 Acta Opt. Sin. 18 431 (in Chinese)
[17] Dalton B J and Knight P L 1982 J. Phys. B 15 3997
[18] Dalton B J, McDuff R and Knight P L 2010 Opt. Acta: Int. J. Opt. 32 61
[19] Li G X, Peng J S and Zhou P 1997 J. Mod. Opt. 44 505
[20] Zhang L, Yan L Y, Bao H H, Chai X X, Ma D D, Wu Q N, Xia L C, Yao D and Qian J 2017 Acta Phys. Sin. 66 213301 (in Chinese)
[21] Song Y, Han S, Yang Y J, Guo F M and Li S Y 2020 Chin. Phys. B 29 093204
[22] Yakovlenko S I 1999 Russ. Phys. J. 42 732
[23] Lu X Y, Wang L D and Li Y F 2022 Chin. Phys. B 31 063203
[24] Liu C P, Gong S Q, Zheng Z X and Xu Z Z 2003 Chin. Opt. Lett. 1 423
[25] Lambropoulos P and Lyras A 1989 Phys. Rev. A 40 2199
[26] Lyras A, Zorman B and Lambropoulos P 1990 Phys. Rev. A 42 543
[27] Stettler J D, Bowden C M, Witriol N M and Eberly J H 1979 Phys. Lett. A 73 171
[28] Katoh K and Suzuki A 1990 J. Nucl. Sci. Technol. 27 554
[29] Ning X J, Jing C Y and Lin F C 1996 Chin. J. Lasers 13 590
[30] Ning X J 2003 J. Opt. Soc. Am. B 20 2363
[31] Lu X Y 2020 Optik 204 164116
[32] Fan X, Liu C, Tian S, Li J, Zhu M, Cui N and Gong S 2004 J. Mod. Opt. 51 399
[33] Ning X J, Jing C M and Lin F C 1996 Chin. Phys. Lett. 13 590
[1] Electron-impact ionization of W9+ and W10+
Runjia Bao(鲍润家), Junkui Wei(魏军奎), Lei Chen(陈雷), Bowen Li(李博文), and Ximeng Chen(陈熙萌). Chin. Phys. B, 2023, 32(6): 063401.
[2] Numerical studies of isotopic selective photoionization of ytterbium in a three-step ionization scheme
Xiao-Yong Lu(卢肖勇) and Li-De Wang(王立德). Chin. Phys. B, 2023, 32(5): 053204.
[3] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[4] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[5] Complex coordinate rotation method based on gradient optimization
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(2): 023101.
[6] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[7] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[8] Measurements of argon metastable density using the tunable diode laser absorption spectroscopy in Ar and Ar/O2
Dao-Man Han(韩道满), Yong-Xin Liu(刘永新), Fei Gao(高飞), Wen-Yao Liu(刘文耀), Jun Xu(徐军), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(6): 065202.
[9] Theoretical analysis of suppressing Dick effect in Ramsey-CPT atomic clock by interleaving lock
Xiao-Lin Sun(孙晓林), Jian-Wei Zhang(张建伟), Peng-Fei Cheng(程鹏飞), Ya-Ni Zuo(左娅妮), Li-Jun Wang(王力军). Chin. Phys. B, 2018, 27(2): 023101.
[10] Investigation of the nonlinear CPT spectrum of 87Rb and its application for large dynamic magnetic measurement
Chi Xu(徐迟), Shi-Guang Wang(王时光), Yong Hu(胡勇), Yan-Ying Feng(冯焱颖), Li-Jun Wang(王力军). Chin. Phys. B, 2017, 26(6): 064203.
[11] Coherent population trapping magnetometer by differential detecting magneto-optic rotation effect
Fan Zhang(张樊), Yuan Tian(田原), Yi Zhang(张奕), Si-Hong Gu(顾思洪). Chin. Phys. B, 2016, 25(9): 094206.
[12] Image transfer through coherent population trapping based on an atomic ensemble
Zhen-Hai Han(韩振海), Dong-Sheng Ding(丁冬生). Chin. Phys. B, 2016, 25(12): 124201.
[13] Optical nuclear spin polarization in quantum dots
Ai-Xian Li(李爱仙), Su-Qing Duan(段素青), Wei Zhang(张伟). Chin. Phys. B, 2016, 25(10): 108506.
[14] Reweighted ensemble dynamics simulations: Theory, improvement, and application
Gong Lin-Chen (龚麟宸), Zhou Xin (周昕), Ouyang Zhong-Can (欧阳钟灿). Chin. Phys. B, 2015, 24(6): 060202.
[15] Phase-controlled coherent population trapping in superconducting quantum circuits
Cheng Guang-Ling (程广玲), Wang Yi-Ping (王一平), Chen Ai-Xi (陈爱喜). Chin. Phys. B, 2015, 24(4): 044204.
No Suggested Reading articles found!