|
|
Theoretical investigations of population trapping phenomena in atomic four-color, three-step photoionization scheme |
Xiao-Yong Lu(卢肖勇)1,† and Ya-Peng Sun(孙亚鹏)1,2 |
1 Science and Technology on Particle Transport and Separation Laboratory, Tianjin 300180, China; 2 Department of Engineering Physics, Tsinghua University, Beijing 100084, China |
|
|
Abstract The four-color three-step selective photoionization process of atom is very important in laser isotope separation technology. The population trapping phenomena and their influences are studied theoretically in monochromatic and non-monochromatic laser fields based on the density matrix theory in this work. Time evolutions of the photoionization properties of the four-color, three-step process are given. The population trapping effects occur intensely in monochromatic excitation, while it gradually turns weak as the laser bandwidth increases. The effects of bandwidth, Rabi frequency, time delay, and frequency detuning on the population trapping effect are investigated in monochromatic and non-monochromatic laser fields. The effects of laser process parameters and atomic parameters on the effective selective photoionization are also discussed. The ionization probability and selectivity factors, as evaluation indexes, are difficult to improve synchronously by adjusting systematic parameters. Besides, the existence of metastable state may play a negative role when its population is low enough.
|
Received: 02 September 2023
Revised: 28 November 2023
Accepted manuscript online: 30 November 2023
|
PACS:
|
32.80.-t
|
(Photoionization and excitation)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
37.10.Vz
|
(Mechanical effects of light on atoms, molecules, and ions)
|
|
32.70.Jz
|
(Line shapes, widths, and shifts)
|
|
Corresponding Authors:
Xiao-Yong Lu
E-mail: lu-xy15@tsinghua.org.cn
|
Cite this article:
Xiao-Yong Lu(卢肖勇) and Ya-Peng Sun(孙亚鹏) Theoretical investigations of population trapping phenomena in atomic four-color, three-step photoionization scheme 2024 Chin. Phys. B 33 033202
|
[1] Bokhan P A, Buchanov V V, Fateev N V, Kalugin M M, Kazaryan M A, Prokhorov A M and Zakrevskii D E 2006 Laser isotope separation in atomic vapor (John Wiley & Sons) pp. 91-100 [2] Wendt K, Mattolat C, Gottwald T, Kron T, Raeder S, Rothe S, Schwellnus F and Tomita H 2013 Phys. Rev. A 88 052510 [3] Nakhate S G, Bhattacharyya S, Mukund S, Behera R, Pradhan S, Bhatia M S, Datar V M, Nanal V, Pillay R G and Wategaonkar S J 2019 Appl. Phys. B 125 23 [4] Saleem M, Hussain S, Rafiq M and Baig M A 2006 J. Appl. Phys. 100 053111 [5] Pratt S T 1995 Rep. Prog. Phys. 58 821 [6] Sun Y N, Wang Y H, Song L L, Du H B, Wang X C, He L H, Luo S Z, Yang Q, Leng J and Liu F C 2020 Chin. Phys. B 29 093201 [7] Schleier D, Constantinidis P, Faβheber N, Fischer I, Friedrichs G, Hemberger P, Reusch E, Sztáray B and Voronova K 2018 Phys. Chem. Chem. Phys. 20 10721 [8] Park H, Kwon D H, Cha Y H, Kim T S, Han J, Ko K H, Jeong D Y and Kim C J 2008 J. Nucl. Sci. Technol. 45 111 [9] D'yachkov A B, Gorkunov A A, Labozin A V, Makoveeva K A, Mironov S M, Firsov V A, Tsvetkov G O and Panchenko V Y 2021 Quantum Electron. 51 317 [10] Sankari M and Suryanarayana M V 2015 J. Nucl. Eng. Radiat. Sci. 1 041017 [11] Gomonai A, Kelman V and Plekan O 2003 Radiat. Phys. Chem. 68 137 [12] Saini V K, Talwar S, Subrahmanyam V V, Mishra R K, Saini P K and Dixit S K 2020 Phys. Scr. 95 075403 [13] Suryanarayana M V 2023 Sci. Rep. 13 7001 [14] D'yachkov A B, Gorkunov A A, Labozin A V, Mironov S M, Panchenko V Y and Firsov V A 2016 Quantum Electron. 46 574 [15] Park S J and Kim J B 2020 Hyperfine Interact. 241 1 [16] Ning X J, Lin F C and Jing C M 1998 Acta Opt. Sin. 18 431 (in Chinese) [17] Dalton B J and Knight P L 1982 J. Phys. B 15 3997 [18] Dalton B J, McDuff R and Knight P L 2010 Opt. Acta: Int. J. Opt. 32 61 [19] Li G X, Peng J S and Zhou P 1997 J. Mod. Opt. 44 505 [20] Zhang L, Yan L Y, Bao H H, Chai X X, Ma D D, Wu Q N, Xia L C, Yao D and Qian J 2017 Acta Phys. Sin. 66 213301 (in Chinese) [21] Song Y, Han S, Yang Y J, Guo F M and Li S Y 2020 Chin. Phys. B 29 093204 [22] Yakovlenko S I 1999 Russ. Phys. J. 42 732 [23] Lu X Y, Wang L D and Li Y F 2022 Chin. Phys. B 31 063203 [24] Liu C P, Gong S Q, Zheng Z X and Xu Z Z 2003 Chin. Opt. Lett. 1 423 [25] Lambropoulos P and Lyras A 1989 Phys. Rev. A 40 2199 [26] Lyras A, Zorman B and Lambropoulos P 1990 Phys. Rev. A 42 543 [27] Stettler J D, Bowden C M, Witriol N M and Eberly J H 1979 Phys. Lett. A 73 171 [28] Katoh K and Suzuki A 1990 J. Nucl. Sci. Technol. 27 554 [29] Ning X J, Jing C Y and Lin F C 1996 Chin. J. Lasers 13 590 [30] Ning X J 2003 J. Opt. Soc. Am. B 20 2363 [31] Lu X Y 2020 Optik 204 164116 [32] Fan X, Liu C, Tian S, Li J, Zhu M, Cui N and Gong S 2004 J. Mod. Opt. 51 399 [33] Ning X J, Jing C M and Lin F C 1996 Chin. Phys. Lett. 13 590 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|