Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 017501    DOI: 10.1088/1674-1056/ae1727
COMPUTATIONAL PROGRAMS FOR PHYSICS Prev   Next  

Micromagnetic simulation of μMAG standard problem No. 3: Evaluating the standard dipole-dipole interaction

A. K. F. Silva, D. C. Carvalho, H. S. Assis, and P. Z. Coura
Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-330 Minas Gerais, Brazil
Abstract  Cubic-shaped magnetic particles subjected to a dimensionless uniaxial anisotropy ($Q = 0.1$) aligned with one of the crystallographic axes provide an ideal system for investigating magnetic equilibrium states. In this system, three fundamental magnetization configurations are identified: (i) the flower state, (ii) the twisted flower state, and (iii) the vortex state. This problem corresponds to standard problem No. 3 proposed by the NIST Micromagnetics Modeling Group, widely adopted as a benchmark for validating computational micromagnetics methods. In this work, we approach the problem using a computational method based on direct dipolar interactions, in contrast to conventional techniques that typically compute the demagnetizing field via finite difference-based fast Fourier transform (FFT) methods, tensor grid approaches, or finite element formulations. Our results are compared with established literature data, focusing on the dimensionless parameter $\lambda=L/l_{\rm ex}$, where $L$ is the cube edge length and $l_{\rm ex}$ is the exchange length of the material. To analyze equilibrium state transitions, we systematically varied the size $L$ as a function of the simulation cell number $N$ and intercellular spacing $a$, determining the critical $\lambda$ value associated with configuration changes. Our simulations reveal that the transition between the twisted flower and vortex states occurs at $\lambda \approx 8.45$, consistent with values reported in the literature, validating our code (Grupo de Física da Matéria Condensada - UFJF), and shows that this standard problem can be resolved using only interaction dipolar of a direct way without the need for sophisticated additional calculations.
Keywords:  micromagnetic simulation      standard problem No. 3      dipolar interaction  
Received:  05 August 2025      Revised:  16 October 2025      Accepted manuscript online:  24 October 2025
PACS:  75.78.-n (Magnetization dynamics)  
  75.78.Cd (Micromagnetic simulations ?)  
  75.40.Mg (Numerical simulation studies)  
  75.10.Hk (Classical spin models)  
Corresponding Authors:  A. K. F. Silva     E-mail:  antonio.kaeliton@estudante.ufjf.br

Cite this article: 

A. K. F. Silva, D. C. Carvalho, H. S. Assis, and P. Z. Coura Micromagnetic simulation of μMAG standard problem No. 3: Evaluating the standard dipole-dipole interaction 2026 Chin. Phys. B 35 017501

[1] Schabes M E and Bertram H N 1988 J. Appl. Phys. 64 1347
[2] Coey J M D and Parkin S S P 2021 Handbook of Magnetism and Magnetic Materials 1st edn (Switzerland: Springer)
[3] Brown Jr W F 1978 J. Appl. Phys. 49 1937
[4] Bagneres-Viallix A, Baras P and Albertini J B 1991 IEEE Trans. Magn. 27 3819
[5] Kruger B, Selke G, Drews A and Pfannkuche D 2013 IEEE Trans. Magn. 49 4749
[6] Exl L and Schrefl T 2014 J. Comput. Phys. 270 490
[7] Wang W, Lyu B, Kong L, Fangohr H and Du H 2024 Chin. Phys. B 33 107508
[8] Rave W, Fabian K and Hubert A 1998 J. Magn. Magn. Mater. 190 332
[9] Hertel R and Kronmuller H 2002 J. Magn. Magn. Mater. 238 185
[10] McMichael R D μMag Standard Problems (1998) Accessed: January 28, 2024
[11] Brown Jr W F Micromagnetics (New York: Wiley) 1963
[12] Brown Jr W F and La Bonte A E 1965 J. Appl. Phys. 36 1380
[13] Ivanov Y P and Chubykalo-Fesenko O 2015 Magnetic Nano- and Microwires (Cambridge: Woodhead Publishing) pp. 423–448
[14] Toscano D, Leonel S A, Dias R A, Coura P Z, Rocha J C S and Costa B V 2011 J. Appl. Phys. 109 014301
[15] Toscano D, Leonel S A, Dias R A, Coura P Z and Costa B V 2011 J. Appl. Phys. 109 076104
[16] Farias W S, Santece I A and Coura P Z 2023 J. Magn. Magn. Mater. 568 170386
[17] Gilbert T L 2004 IEEE Trans. Magn. 40 3443
[18] Santece, I A and Gomes, J C S and Toscano, D and Monteiro Jr, M G and Mendonça, J P A and Araujo, C I L and Sato, F and Leonel, S A and Coura, P Z 2020 QUARKS Brazilian Electronic Journal of Physics Chemistry and Materials Science. 2674–9688
[19] Torres, L and Lopez-Diaz, L and Martinez, E and Alejos, O 2012 IEEE Transactions on Magnetics 39 5
[20] Giordano, A and Finocchio, G and Torres, L and Carpentieri, M and Azzerboni, B 2012 J. Appl. Phys. 111 07D112
[21] Raimondo E, Darwin E, Rodrigues D, Giordano A, Carpentieri M, Finocchio G, Tomasello R 2024 IEEE 24th International Conference on Nanotechnology (NANO) 191–195
[22] Vansteenkiste A, Leliaert J, Dvornik M, Garcia-Sanchez F and Van Waeyenberge B 2014 AIP Adv. 4 107133
[23] Yang L, Chen J and Hu G 2021 J. Comput. Phys. 431 110142
[24] Bjørk R, Poulsen E B, Nielsen K K and Insinga A R 2021 J. Magn. Magn. Mater. 535 168057
[25] Ribeiro F, Freitas P P and Martins J L 1999 J. Appl. Phys. 85 5810
[26] Makarov A 2014 Modeling of Emerging Resistive Switching Based Memory Cells (Vienna: E360 - Institut fur Mikroelektronik)
[27] Izmozherov I M, Zverev V V and Baykenov E Z 2019 J. Phys.: Conf. Ser. 1389 012002
[1] Direct observation of ultrafast magnetization dynamics in Co/Ni bit patterned media by time-resolved scanning Kerr microscopy
Wei Zhang(张伟), Wei He(何为), Qin-Li Lv(吕琴丽), Jian-Wang Cai(蔡建旺), Xiang-Qun Zhang(张向群), and Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2025, 34(4): 047501.
[2] Coupling of magnon modes in nanodisk with spin texture
Zijie Zhou(周子杰), Junning Zhao(赵俊宁), Xinhui Ma(马心慧), Rong Wang(王熔), and Fusheng Ma(马付胜). Chin. Phys. B, 2025, 34(10): 107506.
[3] Mapping the antiparallel aligned domain rotation by microwave excitation
Jing Zhang(张景), Yuanzhi Cui(崔远志), Xiaoyu Wang(王晓雨), Chuang Wang(王创), Mengchen Liu(刘梦晨), Jie Xu(徐洁), Kai Li(李凯), Yunhe Zhao(赵芸鹤), Zhenyan Lu(陆振烟), Lining Pan(潘丽宁), Chendong Jin(金晨东), Qingfang Liu(刘青芳), Jianbo Wang(王建波), and Derang Cao(曹德让). Chin. Phys. B, 2024, 33(9): 097506.
[4] Shape-influenced non-reciprocal transport of magnetic skyrmions in nanoscale channel
Jie-Yao Chen(陈杰尧), Jia Luo(罗佳), Geng-Xin Hu(胡更新), Jun-Lin Wang(王君林), Guan-Qi Li(李冠祺), Zhen-Dong Chen(陈振东), Xian-Yang Lu(陆显扬), Guo-Ping Zhao(赵国平), Yuan Liu(刘远), Jing Wu(吴竞), and Yong-Bing Xu(徐永兵). Chin. Phys. B, 2024, 33(7): 077505.
[5] Consistency between domain wall oscillation modes and spin wave modes in nanostrips
Xinwei Dong(董新伟) and Zhenjiang Wu(吴振江). Chin. Phys. B, 2024, 33(6): 067502.
[6] Creation and annihilation of artificial magnetic skyrmions with the electric field
Jun Cheng(程军), Liang Sun(孙亮), Yike Zhang(张一可), Tongzhou Ji(吉同舟), Rongxing Cao(曹荣幸), Bingfeng Miao(缪冰锋), Yonggang Zhao(赵永刚), and Haifeng Ding(丁海峰). Chin. Phys. B, 2024, 33(3): 037501.
[7] MicroMagnetic.jl: A Julia package for micromagnetic and atomistic simulations with GPU support
Weiwei Wang(王伟伟), Boyao Lyu(吕伯尧), Lingyao Kong(孔令尧), Hans Fangohr, and Haifeng Du(杜海峰). Chin. Phys. B, 2024, 33(10): 107508.
[8] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[9] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[10] Multi-segmented nanowires for vortex magnetic domain wall racetrack memory
M Al Bahri, M Al Hinaai, and T Al Harthy. Chin. Phys. B, 2023, 32(12): 127508.
[11] In-plane spin excitation of skyrmion bags
Shuang Li(李爽), Ke-Xin Li(李可欣), Zhao-Hua Liu(刘照华), Qi-Yuan Zhu(朱起源), Chen-Bo Zhao(赵晨博), Hu Zhang(张虎), Xing-Qiang Shi(石兴强), Jiang-Long Wang(王江龙), Rui-Ning Wang(王瑞宁), Ru-Qian Lian(连如乾), Peng-Lai Gong(巩朋来), and Chen-Dong Jin(金晨东). Chin. Phys. B, 2023, 32(11): 117503.
[12] Optimization of the grain boundary diffusion process by doping gallium and zirconium in Nd-Fe-B sintered magnets
Zhiteng Li(李之藤), Haibo Xu(徐海波), Feng Liu(刘峰), Rongshun Lai(赖荣舜), Renjie Wu(武仁杰), Zhibin Li(李志彬), Yangyang Zhang(张洋洋), and Qiang Ma(马强). Chin. Phys. B, 2023, 32(10): 107503.
[13] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[14] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[15] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
No Suggested Reading articles found!