Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 014206    DOI: 10.1088/1674-1056/adea59
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation of ultra-flat broad spectrum with stable single-pulse mode-locking in double-clad Yb-doped fiber laser

Minghui Sun(孙铭烩)1, Dongxin Gao(高懂昕)1, Yunli Yu(于芸丽)1, Wenyu Wang(王文煜)1, Qingcao Liu(刘情操)1, Weixin Liu(刘维新)2, and Yuzhai Pan(潘玉寨)1,†
1 Department of Optoelectronics Science, Harbin Institute of Technology (Weihai), Weihai 264209, China;
2 Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai 264209, China
Abstract  We achieved an ultra-flat broad spectrum output with a 20-dB bandwidth of 77.85 nm in a double-clad Yb-doped fiber laser. The intensity difference between the highest and lowest points of the spectrum indicates a flatness better than 4 dB. More notably, this ultra-flat broad spectrum maintains a stable single-pulse mode-locking state. With the increase of pump power, an ultra-wide spectrum with a 20-dB bandwidth approaching 100 nm was formed at a pump power of 2.25 W. Additionally, we obtained a 9-pulse mode-locked state at another PC station with the same pump, which is the highest number of stable mode-locked pulse bursts observed so far with a first-order Raman frequency shift. This fiber laser shows its benefits of ultra-flat broad spectrum, high stability, and ease of fabrication, which provides a new method of obtaining the broadband light source for multiple practical applications.
Keywords:  ultra-flat broad spectrum      high stability      double-clad Yb-doped fiber      mode-locked      multi-pulse bursts  
Received:  18 April 2025      Revised:  13 June 2025      Accepted manuscript online:  01 July 2025
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12204132), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MF122), Shandong Province Technology- Based SME Innovation Enhancement Project (Grant No. 2024TSGC0715), and the Postgraduate Education Reform Project of Shandong Province, China (Grant No. SDYJSJGC2024107).
Corresponding Authors:  Yuzhai Pan     E-mail:  panyz@hitwh.edu.cn

Cite this article: 

Minghui Sun(孙铭烩), Dongxin Gao(高懂昕), Yunli Yu(于芸丽), Wenyu Wang(王文煜), Qingcao Liu(刘情操), Weixin Liu(刘维新), and Yuzhai Pan(潘玉寨) Generation of ultra-flat broad spectrum with stable single-pulse mode-locking in double-clad Yb-doped fiber laser 2026 Chin. Phys. B 35 014206

[1] He X, Lin Q, Guo H, Sun J, Bai J, Hou L andWang K 2019 Appl. Phys. Express 12 072007
[2] Fermann M E and Hartl I 2009 Laser Phys. Lett. 6 11
[3] Tauser F, Leitenstorfer A and Zinth W 2003 Opt. Express 11 594
[4] Gattass R R and Mazur E 2008 Nat. Photon. 2 219
[5] Wang N, Cai J H, Qi X, Chen S P, Yang L J and Hou J 2018 Opt. Express 26 1689
[6] Hernandez-Garcia J C, Pottiez O and Estudillo-Ayala J M 2012 Laser Phys. 22 221
[7] Lin S S, Hwang S K and Liu J M 2014 Opt. Express 22 4152
[8] Fermann M E and Hartl I 2013 Nat. Photon. 7 868
[9] Chang G and Wei Z 2020 iScience 23 101101
[10] Gao X, Zhao Z, Cong Z, Gao G, Zhang A, Guo H, Yao G and Liu Z 2021 Opt. Express 29 9021
[11] Dong Z, Lin J, Li H, Zhang Y, Gu C, Yao P and Xu L 2020 Opt. Laser Technol. 130 106337
[12] Hu P, Mao J, Zhou X, Feng T, Nie H,Wang R, Zhang B, Li T, He J and Yang K 2023 Opt. Laser Technol. 161 109218
[13] Zheng W, Ruan S, Zhang M, Liu W, Zhang Y and Yang X 2013 Opt. Laser Technol. 50 145
[14] Shang X, Guo L, Gao J, Jiang S, Han X, Guo Q, Chen X, Li D and Zhang H 2019 Appl. Phys. B 125 193
[15] Woodward R and Kelleher E 2015 Appl. Sci. 5 1440
[16] Peng J, Zhu R, Shen T, Liu Y, Ma Y and Gu F 2023 Photonics 10 543
[17] Wang G, Baker-Murray A A and Blau W J 2019 Laser Photonics Rev. 13 1800282
[18] Ming Z and Tianshu W 2024 J. Appl. Opt. 45 834
[19] Ahmad H, Lutfi M A M, Ortaç B, Zaini M K A and Samion M Z 2024 Optical Fiber Technology 87 103861
[20] Hönninger C, Plötner M, Ortaç B, Ackermann R, Kammel R, Limpert J, Nolte S and Tünnermann A 2009 Proc. SPIE 7203, Commercial and Biomedical Applications of Ultrafast Lasers IX, 72030W (24 February 2009)
[21] Kumar M, Islam M N, Terry F L, Freeman M J, Chan A, Neelakandan M and Manzur T 2012 Appl. Opt. 51 2794
[22] Mingareev I, Weirauch F, Olowinsky A, Shah L, Kadwani P and Richardson M 2012 Opt. Laser Technol. 44 2095
[23] Seddon A B 2011 Int. J. Appl. Glass Sci. 2 177
[24] Hui Z, Zhang X, XuW, Li N and Li X 2023 Optics & Laser Technology 157 108712
[25] Ahmad H, Ahmed M H M, Yusoff N, Ramli R and Samion M Z 2020 Optics & Laser Technology 130 106350
[26] Song R, Hou J, Chen S, Yang W and Lu Q 2012 Opt. Lett. 37 1529
[27] Gao J, Ge T and Wang Z 2014 Opt. Eng. 53 86109
[28] Wang H, Han H, Shao X, Zhang Z, Zhu J and Wei Z 2022 Appl. Phys. B 128 25
[29] Agrawal G P 2000 Nonlinear fiber optics/Nonlinear Science at the Dawn of the 21st Century (Berlin, Heidelberg: Springer Berlin Heidelberg), 2000 pp. 195–211
[30] Alcántara-Bautista U, Durán-Sánchez M, Addiel Espinosa-De-La-Cruz E, Armas-Rivera I, Bello-Jiménez M and Ibarra-Escamilla B 2024 Optics & Laser Technology 168 110016
[31] Carrillo-Delgado C M, Hernandez-Garcia J C, Estudillo-Ayala J M, Pottiez O, Lauterio-Cruz J P, Filoteo-Razo J D, Jauregui-Vazquez D, Sierra-Hernandez J M and Rojas-Laguna R 2020 Laser Phys. Lett. 17 065106
[32] Zhang B, Chen X, Zhang X, Liu Z, Li M, Liu J, Xu L, Hu Q and Li P 2022 Infrared Physics & Technology 120 103990
[33] Manriquez-Cobian N, Hernandez-Garcia J C, Estudillo-Ayala J M, Pottiez O, Filoteo-Razo J D and Rojas-Laguna R 2024 Optics & Laser Technology 172 110530
[34] Dong T, Lin J, Gu C, Yao P and Xu L 2021 Opt. Commun. 484 126679
[35] Li X, Zhang S, Hao Y and Yang Z 2014 Opt. Express, OE 22 6699
[36] Liu J, Li P, Li M, Chen X, Zhang B, Xu L, Hu Q and Gao L 2022 Optik 251 168490
[37] Yu H, Wang X, Zhou P, Xu X and Chen J 2014 Appl. Phys. B 117 305
[38] Liu C, Cao Y, Tang X, Tang M and Zhao L 2022 Chin. J. Lasers 49 2100002
[1] Pure-quartic soliton molecules in normal fourth-order dispersion regimes based on spectral filtering effect
Han-Yang Shen(申翰阳), Rui-Bo Lan(蓝睿博), Hong-Bin Hu(胡洪彬), Yang Li(李阳), Rui Zhou(周瑞), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2025, 34(3): 034203.
[2] Wavelength switchable mode-locked fiber laser with a few-mode fiber filter
Shaokang Bai(白少康), Yujin Xiang(向昱锦), and Zuxing Zhang(张祖兴). Chin. Phys. B, 2023, 32(2): 024209.
[3] Comprehensive analysis of pure-quartic soliton dynamics in a passively mode-locked fiber laser
Lie Liu(刘列), Ying Han(韩颖), Jiayu Huo(霍佳雨), Honglin Wen(文红琳), Ge Wu(吴戈), and Bo Gao(高博). Chin. Phys. B, 2023, 32(11): 114209.
[4] Direct Kerr-lens mode-locked Tm:LuYO3 ceramic laser
Weijun Ling(令维军), Jingwen Xue(薛婧雯), Jinfang Yang(杨金芳) Chong Wang(王翀), Xiaojuan Du(杜晓娟), Wenting Wang(王文婷), Mingxia Zhang(张明霞), Feiping Lu(路飞平), Xiangbing Li(李向兵), and Zhong Dong(董忠). Chin. Phys. B, 2023, 32(11): 114211.
[5] Fabrication and research of bi-functional CuNi2S4 nanosheets decorated TiO2/CuNi2S4 heterojunction photoanode for photoelectrochemical water splitting
Wei Jin(金伟), Liyuan Zhang(张立媛), Wenjing Zhang(张文静), Qian Sun(孙倩), Dekai Zhang(张德恺), Hui Miao(苗慧), and Xiaoyun Hu(胡晓云). Chin. Phys. B, 2023, 32(11): 118201.
[6] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[7] Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser
Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎). Chin. Phys. B, 2021, 30(1): 014206.
[8] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[9] Noise-like rectangular pulses in a mode-locked double-clad Er:Yb laser with a record pulse energy
Tianyi Wu(吴田宜), Zhiyuan Dou(窦志远), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2020, 29(1): 014202.
[10] Diode-pumped Kerr-lens mode-locked Ti: sapphire laser with broad wavelength tunability
Han Liu(刘寒), Geyang Wang(王阁阳), Ke Yang(杨科), Renzhu Kang(康仁铸), Wenlong Tian(田文龙), Dacheng Zhang(张大成), Jiangfeng Zhu(朱江峰), Hainian Han(韩海年), Zhiyi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094213.
[11] High power diode-pumped passively mode-locked Nd:YVO4 laser at repetition rate of 3.2 GHz
Meng-Yao Cheng(程梦尧), Zhao-Hua Wang(王兆华), Yan-Fang Cao(曹艳芳), Xiang-Hao Meng(孟祥昊), Jiang-Feng Zhu(朱江峰), Jun-Li Wang(王军利), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(5): 054205.
[12] Femtosecond Tm-Ho co-doped fiber laser using a bulk-structured Bi2Se3 topological insulator
Jinho Lee(李珍昊), Ju Han Lee(李周翰). Chin. Phys. B, 2018, 27(9): 094219.
[13] Generation and evolution of multiple operation states in passively mode-locked thulium-doped fiber laser by using a graphene-covered-microfiber
Xiao-Fa Wang(王小发), Jun-Hong Zhang(张俊红), Xiao-Ling Peng(彭晓玲), Xue-Feng Mao(毛雪峰). Chin. Phys. B, 2018, 27(8): 084215.
[14] Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser
Zhen-Dong Chen(陈振东), Yong-Gang Wang(王勇刚), Lu Li(李璐), Rui-Dong Lv(吕瑞东), Liang-Lei Wei(韦良雷), Si-Cong Liu(刘思聪), Jiang Wang(王江), Xi Wang(王茜). Chin. Phys. B, 2018, 27(8): 084206.
[15] Carboxyl graphene oxide solution saturable absorber for femtosecond mode-locked erbium-doped fiber laser
Rui-dong Lv(吕瑞东), Lu Li(李璐), Yong-gang Wang(王勇刚), Zhen-dong Chen(陈振东), Si-cong Liu(刘思聪), Xi Wang(王茜), Jiang Wang(王江), Yong-fang Li(李永放). Chin. Phys. B, 2018, 27(11): 114214.
No Suggested Reading articles found!