| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Phase sensitivity of a lossy truncated SU(1,1) interferometer with double-port homodyne detection |
| Yu-Wei Xiao(肖煜伟), Yue Ji(吉悦), Jia-Yi Wei(魏嘉怡), Jian-Dong Zhang(张建东), and Li-Li Hou(侯丽丽)† |
| School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China |
|
|
|
|
Abstract We theoretically investigate the phase sensitivity of a truncated SU(1,1) interferometer fed with a two-mode coherent state and employing double-port homodyne detection. On the one hand, we analytically demonstrate that the two-mode coherent state provides better phase sensitivity than the single-mode coherent state. In addition, we show that the double-port homodyne detection is a quasi-optimal measurement. For a bright coherent-state input, the sensitivity of this scheme saturates the phase-sensitivity bound determined by the quantum Fisher information. On the other hand, we quantitatively illustrate the advantage of double-port homodyne detection over the single-port scheme under ideal conditions and in the presence of photon loss, respectively. Furthermore, our analysis indicates that the scheme we propose is robust against photon loss.
|
Received: 17 June 2025
Revised: 11 August 2025
Accepted manuscript online: 20 August 2025
|
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
| |
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104193 and U24A2017), National Undergraduate Training Program for Innovation and Entrepreneurship (Grant No. 202411463037Z), and the project of Changzhou Physics Society Fund (Grant No. CW20250102). |
Corresponding Authors:
Li-Li Hou
E-mail: hllslxy@jsut.edu.cn
|
Cite this article:
Yu-Wei Xiao(肖煜伟), Yue Ji(吉悦), Jia-Yi Wei(魏嘉怡), Jian-Dong Zhang(张建东), and Li-Li Hou(侯丽丽) Phase sensitivity of a lossy truncated SU(1,1) interferometer with double-port homodyne detection 2026 Chin. Phys. B 35 014205
|
[1] Caves C M 1981 Phys. Rev. D 23 1693 [2] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330 [3] Pirandola S, Bardhan B R, Gehring T, Weedbrook C and Lloyd S 2018 Nat. Photonics 12 724 [4] Lawrie B J, Lett P D, Marino AMand Pooser R C 2019 ACS Photonics 6 1307 [5] Pezze A L, Smerzi, Oberthaler M K, Schmied R and Treutlein P 2018 Rev. Mod. Phys. 90 035005 [6] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002 [7] Pezze L and Smerzi A 2008 Phys. Rev. Lett. 100 073601 [8] Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett. 104 103602 [9] Joo J, Munro W J and Spiller T P 2011 Phys. Rev. Lett. 107 083601 [10] Pezze L and Smerzi A 2013 Phys. Rev. Lett. 110 163604 [11] Israel Y, Rosen S and Silberberg Y 2014 Phys. Rev. Lett. 112 103604 [12] Tang J, Du Z H, Zhong W, Zhou L and Y B Sheng 2025 Chin. Phys. B 34 020303 [13] Liu J, Shao T, Li C, Zhang M, Hu Y, Chen D and Wei D 2024 Chin. Phys. B 33 014203 [14] Xu J H, Wang J Z, Chen A X, Li Y and Jin G R 2019 Chin. Phys. B 28 120303 [15] Marino A M, Pooser R C, Boyer V and Lett P D 2009 Nature 457 859 [16] Anderson B E, Schmittberger B L, Gupta P, Jones K M and Lett P D 2017 Phys. Rev. A 95 063843 [17] PlickWN, Dowling J P and Agarwal G S 2010 New J. Phys. 12 083014 [18] Gao Y 2016 Phys. Rev. A 94 023834 [19] Gong Q K, Hu X L, Li D, Yuan C H, Ou Z Y and Zhang W 2017 Phys. Rev. A 96 033809 [20] Li D, Gard B T, Gao Y, Yuan C H, Zhang W, Lee H and Dowling J P 2016 Phys. Rev. A 94 063840 [21] Ma X P, You C L, Adhikari S, Matekole E S, Glasser R T, Lee H and Dowling J P 2018 Opt. Express 26 18492 [22] Li D, Yuan H C, Yao Y, Jiang W, Li M and Zhang W 2018 J. Opt. Soc. Am. B 35 1080 [23] Zhang J D, Li C, Hou L L and Wang S 2025 Chin. Phys. B 34 010304 [24] Hudelist F, Kong J, Liu C, Jing J, Ou Z Y and Zhang W 2014 Nat. Commun. 5 3049 [25] Manceau M, Leuchs G, Khalili F and Chekhova M 2017 Phys. Rev. Lett. 119 223604 [26] Horoshko D B, Kolobov M I, Gumpert F, Shand I, König F and Chekhova M V 2019 J. Mod. Opt. 67 41 [27] Szigeti S S, Lewis-Swan R J and Haine S A 2017 Phys. Rev. Lett. 118 150401 [28] Zhang J D, You C, Li C and Wang S 2021 Phys. Rev. A 103 032617 [29] Zhang J D, Li C and Wang S 2022 J. Opt. Soc. Am. B 39 1323 [30] Anderson B E, Gupta P, Schmittberger B L, Horrom T, Hermann- Avigliano C, Jones K M and Lett P D 2017 Optica 4 752 [31] Anderson B E, Schmittberger B L, Gupta P, Jones K M and Lett P D 2017 Phys. Rev. A 95 063843 [32] Li D, Yuan C H, Ou Z Y and Zhang W 2014 New J. Phys. 16 073020 [33] Pezzé L and Smerzi A 2008 Phys. Rev. Lett. 100 073601 [34] Zhong W, Zhou L and Sheng Y B 2021 Phys. Rev. A 103 042611 [35] Gong Q K, Li D, Yuan C H, Qu Z Y and Zhang W P 2017 Chin. Phys. B 26 094205 [36] Jiao G F,Wang Q, Yu Z, Chen L Q, ZhangWand Yuan C H 2021 Phys. Rev. A 104 013725 [37] Leonhardt U 1998 Measuring the Quantum State of Light (Cambridge: Cambridge University Press) |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|