Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 014205    DOI: 10.1088/1674-1056/adfd46
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Phase sensitivity of a lossy truncated SU(1,1) interferometer with double-port homodyne detection

Yu-Wei Xiao(肖煜伟), Yue Ji(吉悦), Jia-Yi Wei(魏嘉怡), Jian-Dong Zhang(张建东), and Li-Li Hou(侯丽丽)†
School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
Abstract  We theoretically investigate the phase sensitivity of a truncated SU(1,1) interferometer fed with a two-mode coherent state and employing double-port homodyne detection. On the one hand, we analytically demonstrate that the two-mode coherent state provides better phase sensitivity than the single-mode coherent state. In addition, we show that the double-port homodyne detection is a quasi-optimal measurement. For a bright coherent-state input, the sensitivity of this scheme saturates the phase-sensitivity bound determined by the quantum Fisher information. On the other hand, we quantitatively illustrate the advantage of double-port homodyne detection over the single-port scheme under ideal conditions and in the presence of photon loss, respectively. Furthermore, our analysis indicates that the scheme we propose is robust against photon loss.
Keywords:  quantum-enhanced interferometer      parameter estimation      homodyne detection  
Received:  17 June 2025      Revised:  11 August 2025      Accepted manuscript online:  20 August 2025
PACS:  42.50.-p (Quantum optics)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104193 and U24A2017), National Undergraduate Training Program for Innovation and Entrepreneurship (Grant No. 202411463037Z), and the project of Changzhou Physics Society Fund (Grant No. CW20250102).
Corresponding Authors:  Li-Li Hou     E-mail:  hllslxy@jsut.edu.cn

Cite this article: 

Yu-Wei Xiao(肖煜伟), Yue Ji(吉悦), Jia-Yi Wei(魏嘉怡), Jian-Dong Zhang(张建东), and Li-Li Hou(侯丽丽) Phase sensitivity of a lossy truncated SU(1,1) interferometer with double-port homodyne detection 2026 Chin. Phys. B 35 014205

[1] Caves C M 1981 Phys. Rev. D 23 1693
[2] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[3] Pirandola S, Bardhan B R, Gehring T, Weedbrook C and Lloyd S 2018 Nat. Photonics 12 724
[4] Lawrie B J, Lett P D, Marino AMand Pooser R C 2019 ACS Photonics 6 1307
[5] Pezze A L, Smerzi, Oberthaler M K, Schmied R and Treutlein P 2018 Rev. Mod. Phys. 90 035005
[6] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[7] Pezze L and Smerzi A 2008 Phys. Rev. Lett. 100 073601
[8] Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett. 104 103602
[9] Joo J, Munro W J and Spiller T P 2011 Phys. Rev. Lett. 107 083601
[10] Pezze L and Smerzi A 2013 Phys. Rev. Lett. 110 163604
[11] Israel Y, Rosen S and Silberberg Y 2014 Phys. Rev. Lett. 112 103604
[12] Tang J, Du Z H, Zhong W, Zhou L and Y B Sheng 2025 Chin. Phys. B 34 020303
[13] Liu J, Shao T, Li C, Zhang M, Hu Y, Chen D and Wei D 2024 Chin. Phys. B 33 014203
[14] Xu J H, Wang J Z, Chen A X, Li Y and Jin G R 2019 Chin. Phys. B 28 120303
[15] Marino A M, Pooser R C, Boyer V and Lett P D 2009 Nature 457 859
[16] Anderson B E, Schmittberger B L, Gupta P, Jones K M and Lett P D 2017 Phys. Rev. A 95 063843
[17] PlickWN, Dowling J P and Agarwal G S 2010 New J. Phys. 12 083014
[18] Gao Y 2016 Phys. Rev. A 94 023834
[19] Gong Q K, Hu X L, Li D, Yuan C H, Ou Z Y and Zhang W 2017 Phys. Rev. A 96 033809
[20] Li D, Gard B T, Gao Y, Yuan C H, Zhang W, Lee H and Dowling J P 2016 Phys. Rev. A 94 063840
[21] Ma X P, You C L, Adhikari S, Matekole E S, Glasser R T, Lee H and Dowling J P 2018 Opt. Express 26 18492
[22] Li D, Yuan H C, Yao Y, Jiang W, Li M and Zhang W 2018 J. Opt. Soc. Am. B 35 1080
[23] Zhang J D, Li C, Hou L L and Wang S 2025 Chin. Phys. B 34 010304
[24] Hudelist F, Kong J, Liu C, Jing J, Ou Z Y and Zhang W 2014 Nat. Commun. 5 3049
[25] Manceau M, Leuchs G, Khalili F and Chekhova M 2017 Phys. Rev. Lett. 119 223604
[26] Horoshko D B, Kolobov M I, Gumpert F, Shand I, König F and Chekhova M V 2019 J. Mod. Opt. 67 41
[27] Szigeti S S, Lewis-Swan R J and Haine S A 2017 Phys. Rev. Lett. 118 150401
[28] Zhang J D, You C, Li C and Wang S 2021 Phys. Rev. A 103 032617
[29] Zhang J D, Li C and Wang S 2022 J. Opt. Soc. Am. B 39 1323
[30] Anderson B E, Gupta P, Schmittberger B L, Horrom T, Hermann- Avigliano C, Jones K M and Lett P D 2017 Optica 4 752
[31] Anderson B E, Schmittberger B L, Gupta P, Jones K M and Lett P D 2017 Phys. Rev. A 95 063843
[32] Li D, Yuan C H, Ou Z Y and Zhang W 2014 New J. Phys. 16 073020
[33] Pezzé L and Smerzi A 2008 Phys. Rev. Lett. 100 073601
[34] Zhong W, Zhou L and Sheng Y B 2021 Phys. Rev. A 103 042611
[35] Gong Q K, Li D, Yuan C H, Qu Z Y and Zhang W P 2017 Chin. Phys. B 26 094205
[36] Jiao G F,Wang Q, Yu Z, Chen L Q, ZhangWand Yuan C H 2021 Phys. Rev. A 104 013725
[37] Leonhardt U 1998 Measuring the Quantum State of Light (Cambridge: Cambridge University Press)
[1] Optimal multi-parameter quantum metrology for frequencies of magnetic field
Zhenhua Long(龙振华) and Shengshi Pang(庞盛世). Chin. Phys. B, 2025, 34(8): 080301.
[2] Phase-matching enhanced quantum phase and amplitude estimation of a two-level system in a squeezed reservoir
Yan-Ling Li(李艳玲), Cai-Hong Liao(廖彩红), and Xing Xiao(肖兴). Chin. Phys. B, 2025, 34(1): 010307.
[3] Enhancing quantum metrology for multiple frequencies of oscillating magnetic fields by quantum control
Xin Lei(雷昕), Jingyi Fan(范静怡), and Shengshi Pang(庞盛世). Chin. Phys. B, 2024, 33(6): 060304.
[4] Parameter estimation in n-dimensional massless scalar field
Ying Yang(杨颖) and Jiliang Jing(荆继良). Chin. Phys. B, 2024, 33(3): 030307.
[5] Holevo bound independent of weight matrices for estimating two parameters of a qubit
Chang Niu(牛畅) and Sixia Yu(郁司夏). Chin. Phys. B, 2024, 33(2): 020304.
[6] Parameter estimation method for a linear frequency modulation signal with a Duffing oscillator based on frequency periodicity
Ningzhe Zhang(张宁哲), Xiaopeng Yan(闫晓鹏), Minghui Lv(吕明慧), Xiumei Chen(陈秀梅), and Dingkun Huang(黄鼎琨). Chin. Phys. B, 2023, 32(8): 080701.
[7] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[8] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[11] Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm
Yue-Xi Peng(彭越兮), Ke-Hui Sun(孙克辉), Shao-Bo He(贺少波). Chin. Phys. B, 2020, 29(3): 030502.
[12] Quantum estimation of detection efficiency with no-knowledge quantum feedback
Dong Xie(谢东), Chunling Xu(徐春玲). Chin. Phys. B, 2018, 27(6): 060303.
[13] Quantum parameter estimation in a spin-boson dephasing quantum system by periodical projective measurements
Le Yang(杨乐), Hong-Yi Dai(戴宏毅), Ming Zhang(张明). Chin. Phys. B, 2018, 27(4): 040601.
[14] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[15] Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength
Danping Lin(林丹萍), Yu Liu(刘禹), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(11): 110303.
No Suggested Reading articles found!