ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Carboxyl graphene oxide solution saturable absorber for femtosecond mode-locked erbium-doped fiber laser |
Rui-dong Lv(吕瑞东)1, Lu Li(李璐)2, Yong-gang Wang(王勇刚)1, Zhen-dong Chen(陈振东)1, Si-cong Liu(刘思聪)1, Xi Wang(王茜)3, Jiang Wang(王江)1, Yong-fang Li(李永放)1 |
1 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China;
2 School of Science, Xi'an Institute of Posts and Telecommunications, Xi'an 710121, China;
3 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China |
|
|
Abstract The carboxyl-functionalized graphene oxide (GO-COOH) is a kind of unique two-dimensional (2D) material and possesses excellent nonlinear saturable absorption property and high water-solubility. In this paper, we prepare saturable absorber (SA) device by depositing GO-COOH nanosheets aqueous solution on a D-shaped fiber. The modulation depth (MD) and saturable intensity of the SA are measured to be 9.6% and 19 MW/cm2, respectively. By inserting the SA into the erbium-doped fiber (EDF) laser, a passively mode-locked EDF laser has been achieved with the spectrum center wavelength of 1562.76 nm. The pulse duration, repetition rate, and the signal-to-noise ratio (SNR) are 500 fs, 14.79 MHz, and 80 dB, respectively. The maximum average output power is measured to be 3.85 mW. These results indicate that the GO-COOH nanosheets SA can be used as a promising mode locker for the generation of ultrashort pulses.
|
Received: 15 May 2018
Revised: 06 August 2018
Accepted manuscript online:
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
Fund: Project supported by the Central University Special Fund Basic Research and Operating Expenses, China (Grant No. GK201702005), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2017JM6091), the National Natural Science Foundation of China (Grant No. 61705183), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2017TS011). |
Corresponding Authors:
Yong-gang Wang
E-mail: chinawygxjw@snnu.edu.cn
|
Cite this article:
Rui-dong Lv(吕瑞东), Lu Li(李璐), Yong-gang Wang(王勇刚), Zhen-dong Chen(陈振东), Si-cong Liu(刘思聪), Xi Wang(王茜), Jiang Wang(王江), Yong-fang Li(李永放) Carboxyl graphene oxide solution saturable absorber for femtosecond mode-locked erbium-doped fiber laser 2018 Chin. Phys. B 27 114214
|
[1] |
Keller U 2003 Nature 424 831
|
[2] |
Brida D, Krauss G, Sell A and Leitenstorfer A 2014 Laser Photon. Rev. 8 409
|
[3] |
Fermann M E and Hartl I 2013 Nat. Photon. 7 868
|
[4] |
Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D and Wang F Q 2013 Sci. Rep. 3 2718
|
[5] |
Luo Z C, Xu W C, Song C X, Luo A P and Chen W C 2009 Chin. Phys. B 18 2328
|
[6] |
Duling I N 1991 Opt. Lett. 16 539
|
[7] |
Fermann M E and Hartl I 2013 Nat. Photon. 7 868
|
[8] |
Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077
|
[9] |
Zhang H, Tang D Y, Zhao L M, Bao Q L and Loh K P 2009 Opt. Express 17 17630
|
[10] |
Yan P G, Lin R Y, Ruan S C, Liu A J, Chen H, Zheng Y Q, Chen S F, Guo C Y and Hu J G 2015 Sci. Rep. 5 8690
|
[11] |
Yang L Z, Yang Y and Wang J F 2016 Chin. Phys. B 25 124203
|
[12] |
Steinmeyer G, Sutter D H, Gallmann L, Matuschek N and Keller U 1999 Science 286 1507
|
[13] |
Sun Z P, Hasan T, Torrisi F, Popa D, Privitera G, Wang F Q, Bonaccorso F, Basko D M and Ferrari A C 2010 ACS Nano 4 803
|
[14] |
Ahmad H, Hassan N A, Aidit S N and Tiu Z C 2016 Opt. Laser Technol. 81 67
|
[15] |
Lau K Y, Abu Bakar M H, Muhammad F D, Latif A A, Omar M F, Yusoff Z and Mahdi M A 2018 Opt. Express 26 12790
|
[16] |
Zhao C J, Zhang H, Qi X, Chen Y, Wang Z T, Wen S C and Tang D Y 2012 Appl. Phys. Lett. 101 211106
|
[17] |
Shao H H, Liu Y M, Zhou X Y and Zhou G H 2014 Chin. Phys. B 23 107304
|
[18] |
Liu H, Luo A P, Wang F Z, Tang R, Liu M, Luo Z C, Xu W C, Zhao C J and Zhang H 2014 Opt. Lett. 39 4591
|
[19] |
Liu W J, Pang L H, Han H N, Shen Z W, Lei M, Teng H and Wei Z Y 2016 Photon. Res. 4 111
|
[20] |
Li L, Wang Y G and Wang X 2017 Laser Phys. 27 085104
|
[21] |
Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y and Zhang H 2018 Laser Photon. Rev. 12 1700229
|
[22] |
Lu L, Tang X, Cao R, Wu L M, Li Z J, Jing G H, Dong B Q, Lu S B, Li Y, Xiang Y J, Li J Q, Fan D Y and Zhang H 2017 Adv. Opt. Mater. 5 1700301
|
[23] |
Kim J W, Choi S Y, Jung B H, Yeom D I and Rotermund F 2013 Appl. Phys. Express 6 032704
|
[24] |
Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W and Abramski K M 2015 Opt. Mater. Express 5 2884
|
[25] |
Zhang H, Tang D Y, Zhao L M, Bao Q L, Loh K P, Lin B and Tjin S C 2010 Laser Phys. Lett. 7 591
|
[26] |
Hasan T, Sun Z P, Wang F Q, Bonaccorso F, Tan P H, Rozhin A G and Ferrari A C 2009 Adv. Mater. 21 3874
|
[27] |
Tan W D, Su C Y, Knize R J, Xie G Q, Li L J and Tang D Y 2010 Appl. Phys. Lett. 96 031106
|
[28] |
Cizmeciyan M N, Kim J W, Bae S, Hong B H, Rotermund F and Sennaroglu A 2013 Opt. Lett. 38 341
|
[29] |
Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L and Abramski K M 2015 Photon. Res. 3 119
|
[30] |
Huang P L, Lin S C, Yeh C Y, Kuo H H, Huang S H, Lin G R, Li L J, Su C Y and Cheng W H 2012 Opt. Express 20 2460
|
[31] |
Popa D, Sun Z P, Torrisi F, Hasan T, Wang F Q and Ferrari A C 2010 Appl. Phys. Lett. 97 203106
|
[32] |
Sun Z P, Popa D, Hasan T, Torrisi F, Wang F Q, Kelleher E J R, Travers J C, Nicolosi V and Ferrari A C 2010 Nano Res. 3 653
|
[33] |
Si Y and Samulski E T 2008 Nano Lett. 8 1679
|
[34] |
Li D, Müller M B, Gilje S, Kaner R B and Wallace G G 2008 Nat. Nanotechnol. 3 101
|
[35] |
Zhao F Y, Wang Y S, Wang Y G, Wang H S and Cai Y J 2017 Chin. Opt. Lett. 15 101402
|
[36] |
Duan L N, Wang H S, Bai J, Wang Y G, Wei L L, Chen Z D, Yu J, Wen J and Li Y 2017 Opt. Eng. 56 1
|
[37] |
Hernandez Y, Nicolosi V, Blighe F M, Hutchison J, Scardaci V, Ferrari A C and Coleman J N 2008 Nat. Nanotechnol. 3 563
|
[38] |
Li H P, Xia H D, Wang Z G, Zhang X X, Chen Y F, Zhang S J, Tang X G and Liu Y 2014 Chin. Phys. B 23 024209
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|